MOF-818中Cu-Co串联位对中性介质中硝酸盐电合成氨的影响

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Hai Sun, , , Zixiang Xia, , , Yuanyuan Qi, , , Qiang Xu, , , Jingwei Han, , , Jiahui Wu, , , Jun-Sheng Qin*, , and , Heng Rao*, 
{"title":"MOF-818中Cu-Co串联位对中性介质中硝酸盐电合成氨的影响","authors":"Hai Sun,&nbsp;, ,&nbsp;Zixiang Xia,&nbsp;, ,&nbsp;Yuanyuan Qi,&nbsp;, ,&nbsp;Qiang Xu,&nbsp;, ,&nbsp;Jingwei Han,&nbsp;, ,&nbsp;Jiahui Wu,&nbsp;, ,&nbsp;Jun-Sheng Qin*,&nbsp;, and ,&nbsp;Heng Rao*,&nbsp;","doi":"10.1021/acscatal.5c04411","DOIUrl":null,"url":null,"abstract":"<p >The electrocatalytic reduction of nitrate (NO<sub>3</sub><sup>–</sup>) to ammonia (NH<sub>3</sub>) is a promising strategy for addressing environmental NO<sub>3</sub><sup>–</sup> pollution. However, achieving a high Faradaic efficiency (FE) for NH<sub>3</sub> production over a wide potential range in neutral electrolytes remains a major challenge for NO<sub>3</sub><sup>–</sup> reduction reaction (NO<sub>3</sub><sup>–</sup>RR). Herein, MOF-818(Cu)–Co was synthesized by immobilizing Co clusters within the porous framework of MOF-818(Cu). MOF-818(Cu)–Co exhibited a superior NH<sub>3</sub> FE and the highest NH<sub>3</sub> yield rate compared to both pristine MOF-818(Cu) and Co nanoparticles (Co NPs). Under neutral conditions, the NH<sub>3</sub> FE exceeded 90% over a wide potential window (−1.3 to −1.8 V vs Ag/AgCl), approaching nearly 100% at −1.5 V (vs Ag/AgCl). Meanwhile, the NH<sub>3</sub> yield rate attained 1.06 mol h<sup>–1</sup> g<sub>cat</sub><sup>–1</sup> at −1.8 V vs Ag/AgCl, corresponding to a CuCo catalytic active sites yield rate of 35.0 mol h<sup>–1</sup> g<sub>CuCo</sub><sup>–1</sup>. In situ characterizations and theoretical calculations showed that the Cu and Co sites in MOF-818(Cu)–Co synergistically lowered the energy barrier of the rate-determining step (RDS, *NO<sub>2</sub><sup>–</sup> → *NO) through a synergistic tandem catalytic mechanism. The Cu sites predominantly catalyzed the reduction of NO<sub>3</sub><sup>–</sup> to NO<sub>2</sub><sup>–</sup>, while the Co sites facilitated the subsequent conversion of NO<sub>2</sub><sup>–</sup> to NH<sub>3</sub>. This study demonstrates that synergistic tandem catalytic systems can significantly enhance ammonia electrosynthesis in neutral media.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 19","pages":"16581–16590"},"PeriodicalIF":13.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tandem Cu–Co Sites in MOF-818 for Efficient Ammonia Electrosynthesis from Nitrate in Neutral Media\",\"authors\":\"Hai Sun,&nbsp;, ,&nbsp;Zixiang Xia,&nbsp;, ,&nbsp;Yuanyuan Qi,&nbsp;, ,&nbsp;Qiang Xu,&nbsp;, ,&nbsp;Jingwei Han,&nbsp;, ,&nbsp;Jiahui Wu,&nbsp;, ,&nbsp;Jun-Sheng Qin*,&nbsp;, and ,&nbsp;Heng Rao*,&nbsp;\",\"doi\":\"10.1021/acscatal.5c04411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrocatalytic reduction of nitrate (NO<sub>3</sub><sup>–</sup>) to ammonia (NH<sub>3</sub>) is a promising strategy for addressing environmental NO<sub>3</sub><sup>–</sup> pollution. However, achieving a high Faradaic efficiency (FE) for NH<sub>3</sub> production over a wide potential range in neutral electrolytes remains a major challenge for NO<sub>3</sub><sup>–</sup> reduction reaction (NO<sub>3</sub><sup>–</sup>RR). Herein, MOF-818(Cu)–Co was synthesized by immobilizing Co clusters within the porous framework of MOF-818(Cu). MOF-818(Cu)–Co exhibited a superior NH<sub>3</sub> FE and the highest NH<sub>3</sub> yield rate compared to both pristine MOF-818(Cu) and Co nanoparticles (Co NPs). Under neutral conditions, the NH<sub>3</sub> FE exceeded 90% over a wide potential window (−1.3 to −1.8 V vs Ag/AgCl), approaching nearly 100% at −1.5 V (vs Ag/AgCl). Meanwhile, the NH<sub>3</sub> yield rate attained 1.06 mol h<sup>–1</sup> g<sub>cat</sub><sup>–1</sup> at −1.8 V vs Ag/AgCl, corresponding to a CuCo catalytic active sites yield rate of 35.0 mol h<sup>–1</sup> g<sub>CuCo</sub><sup>–1</sup>. In situ characterizations and theoretical calculations showed that the Cu and Co sites in MOF-818(Cu)–Co synergistically lowered the energy barrier of the rate-determining step (RDS, *NO<sub>2</sub><sup>–</sup> → *NO) through a synergistic tandem catalytic mechanism. The Cu sites predominantly catalyzed the reduction of NO<sub>3</sub><sup>–</sup> to NO<sub>2</sub><sup>–</sup>, while the Co sites facilitated the subsequent conversion of NO<sub>2</sub><sup>–</sup> to NH<sub>3</sub>. This study demonstrates that synergistic tandem catalytic systems can significantly enhance ammonia electrosynthesis in neutral media.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 19\",\"pages\":\"16581–16590\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.5c04411\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.5c04411","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电催化还原硝酸盐(NO3 -)生成氨(NH3)是解决环境NO3 -污染的一种很有前途的策略。然而,在中性电解质的大电位范围内实现NH3生产的高法拉第效率(FE)仍然是NO3 -还原反应(NO3 - rr)的主要挑战。本文通过将Co团簇固定在MOF-818(Cu) -Co的多孔框架内来合成MOF-818(Cu) -Co。与原始的MOF-818(Cu) -Co纳米粒子(Co NPs)相比,MOF-818(Cu) -Co纳米粒子具有更好的NH3 FE和最高的NH3产率。在中性条件下,NH3 FE在宽电位窗口(- 1.3至- 1.8 V vs Ag/AgCl)内超过90%,在- 1.5 V (vs Ag/AgCl)下接近100%。同时,在−1.8 V /Ag /AgCl条件下,NH3的产率达到1.06 mol h-1 gcu - 1,对应于CuCo催化活性位点的产率为35.0 mol h-1 gcu - 1。原位表征和理论计算表明,MOF-818(Cu) - Co中的Cu和Co位点通过协同串联催化机制,协同降低了速率决定步骤(RDS, *NO2 -→*NO)的能垒。Cu位点主要催化NO3 -还原为NO2 -,而Co位点则促进NO2 -转化为NH3。该研究表明,协同串联催化体系可以显著提高中性介质中氨的电合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tandem Cu–Co Sites in MOF-818 for Efficient Ammonia Electrosynthesis from Nitrate in Neutral Media

Tandem Cu–Co Sites in MOF-818 for Efficient Ammonia Electrosynthesis from Nitrate in Neutral Media

Tandem Cu–Co Sites in MOF-818 for Efficient Ammonia Electrosynthesis from Nitrate in Neutral Media

The electrocatalytic reduction of nitrate (NO3) to ammonia (NH3) is a promising strategy for addressing environmental NO3 pollution. However, achieving a high Faradaic efficiency (FE) for NH3 production over a wide potential range in neutral electrolytes remains a major challenge for NO3 reduction reaction (NO3RR). Herein, MOF-818(Cu)–Co was synthesized by immobilizing Co clusters within the porous framework of MOF-818(Cu). MOF-818(Cu)–Co exhibited a superior NH3 FE and the highest NH3 yield rate compared to both pristine MOF-818(Cu) and Co nanoparticles (Co NPs). Under neutral conditions, the NH3 FE exceeded 90% over a wide potential window (−1.3 to −1.8 V vs Ag/AgCl), approaching nearly 100% at −1.5 V (vs Ag/AgCl). Meanwhile, the NH3 yield rate attained 1.06 mol h–1 gcat–1 at −1.8 V vs Ag/AgCl, corresponding to a CuCo catalytic active sites yield rate of 35.0 mol h–1 gCuCo–1. In situ characterizations and theoretical calculations showed that the Cu and Co sites in MOF-818(Cu)–Co synergistically lowered the energy barrier of the rate-determining step (RDS, *NO2 → *NO) through a synergistic tandem catalytic mechanism. The Cu sites predominantly catalyzed the reduction of NO3 to NO2, while the Co sites facilitated the subsequent conversion of NO2 to NH3. This study demonstrates that synergistic tandem catalytic systems can significantly enhance ammonia electrosynthesis in neutral media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信