Shuning He, , , Mengjia Li, , , Jike Ding, , , Zuoling Zhang, , and , Cong Chen*,
{"title":"合理设计分子钝化剂实现高效稳定钙钛矿太阳能电池的多位点锚定策略。","authors":"Shuning He, , , Mengjia Li, , , Jike Ding, , , Zuoling Zhang, , and , Cong Chen*, ","doi":"10.1021/acs.nanolett.5c03860","DOIUrl":null,"url":null,"abstract":"<p >The inherent trap defects in perovskite materials severely limit the performance and stability of perovskite solar cells (PSCs). In this study, we introduce a novel multisite anchoring strategy (MAS) through the rational design of a 7-fluorobenzo[<i>b</i>]thiophene-2-carboxylic acid as a molecular passivator, aimed at simultaneously addressing multiple defects in perovskite films. The molecular passivator incorporates a benzothiophene backbone, a carboxylic acid group, and fluorine atoms, which work in synergy to reduce defect states and enhance the charge carrier extraction efficiency. As a result, the fabricated PSCs based on vacuum flash evaporation could achieve a high efficiency of 26.92% (with a stabilized certified efficiency of 26.79%). Moreover, the PSC devices could maintain over 96.2% of their initial efficiency after 2000 h of aging by the maximum power point tracking. This work paves the way for the design of multifunctional molecular additives that not only improve device efficiency but also ensure long-term operational stability.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 38","pages":"14195–14203"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisite Anchoring Strategy of Rationally Designed Molecular Passivator for Achieving Efficient and Stable Perovskite Solar Cells\",\"authors\":\"Shuning He, , , Mengjia Li, , , Jike Ding, , , Zuoling Zhang, , and , Cong Chen*, \",\"doi\":\"10.1021/acs.nanolett.5c03860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The inherent trap defects in perovskite materials severely limit the performance and stability of perovskite solar cells (PSCs). In this study, we introduce a novel multisite anchoring strategy (MAS) through the rational design of a 7-fluorobenzo[<i>b</i>]thiophene-2-carboxylic acid as a molecular passivator, aimed at simultaneously addressing multiple defects in perovskite films. The molecular passivator incorporates a benzothiophene backbone, a carboxylic acid group, and fluorine atoms, which work in synergy to reduce defect states and enhance the charge carrier extraction efficiency. As a result, the fabricated PSCs based on vacuum flash evaporation could achieve a high efficiency of 26.92% (with a stabilized certified efficiency of 26.79%). Moreover, the PSC devices could maintain over 96.2% of their initial efficiency after 2000 h of aging by the maximum power point tracking. This work paves the way for the design of multifunctional molecular additives that not only improve device efficiency but also ensure long-term operational stability.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 38\",\"pages\":\"14195–14203\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03860\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03860","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multisite Anchoring Strategy of Rationally Designed Molecular Passivator for Achieving Efficient and Stable Perovskite Solar Cells
The inherent trap defects in perovskite materials severely limit the performance and stability of perovskite solar cells (PSCs). In this study, we introduce a novel multisite anchoring strategy (MAS) through the rational design of a 7-fluorobenzo[b]thiophene-2-carboxylic acid as a molecular passivator, aimed at simultaneously addressing multiple defects in perovskite films. The molecular passivator incorporates a benzothiophene backbone, a carboxylic acid group, and fluorine atoms, which work in synergy to reduce defect states and enhance the charge carrier extraction efficiency. As a result, the fabricated PSCs based on vacuum flash evaporation could achieve a high efficiency of 26.92% (with a stabilized certified efficiency of 26.79%). Moreover, the PSC devices could maintain over 96.2% of their initial efficiency after 2000 h of aging by the maximum power point tracking. This work paves the way for the design of multifunctional molecular additives that not only improve device efficiency but also ensure long-term operational stability.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.