电化学氧化SnS2粉末制备SnOx纳米片增强近红外光热治疗剂

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-16 DOI:10.1021/acsnano.5c03135
Hui-Ping Chang, , , Filipa A. L. S. Silva, , , Eva Nance, , , José R. Fernandes, , , Susana G. Santos, , , Fernão D. Magalhães, , , Artur M. Pinto*, , and , Jean Anne C. Incorvia*, 
{"title":"电化学氧化SnS2粉末制备SnOx纳米片增强近红外光热治疗剂","authors":"Hui-Ping Chang,&nbsp;, ,&nbsp;Filipa A. L. S. Silva,&nbsp;, ,&nbsp;Eva Nance,&nbsp;, ,&nbsp;José R. Fernandes,&nbsp;, ,&nbsp;Susana G. Santos,&nbsp;, ,&nbsp;Fernão D. Magalhães,&nbsp;, ,&nbsp;Artur M. Pinto*,&nbsp;, and ,&nbsp;Jean Anne C. Incorvia*,&nbsp;","doi":"10.1021/acsnano.5c03135","DOIUrl":null,"url":null,"abstract":"<p >Near-infrared (NIR) photothermal therapy (PTT) using nanomaterials is a promising strategy for selective cancer treatment. We report two tin-based two-dimensional (2D) nanoflakes─defective SnS<sub>2</sub> (SnS<sub>2–<i>x</i></sub>) and mixed-phase SnO<sub><i>x</i></sub>─synthesized via top-down ultrasonication and electrochemical exfoliation with oxidation, respectively. Both nanoflakes have thicknesses below 20 nm, and their lateral sizes (&lt;400 nm) were confirmed by AFM, DLS, atomic force microscopy, dynamic light scattering, and transmission electron microscopy (TEM). Despite a similar optical band gap (∼1.89 eV), SnO<sub>2</sub> nanoflakes display a significantly enhanced NIR photothermal performance under 810 nm light emitting diode (LED) irradiation. A 3 mg/mL SnO<sub><i>x</i></sub> dispersion increases in temperature by ∼19 °C after 30 min, and a 0.25 mg/mL sample achieves a photothermal conversion efficiency of 93%. X-ray photoelectron spectroscopy and TEM analyses show that SnO<sub><i>x</i></sub> consists of interconnected SnO and SnO<sub>2</sub> nanocrystals (&lt;5 nm), which promote nonradiative energy release due to exciton confinement effects, unlike the planar SnS<sub>2–<i>x</i></sub> nanoflakes that show negligible heating. <i>In vitro</i> studies demonstrate selective cytotoxicity: SnO<sub><i>x</i></sub> combined with NIR light (100–200 μg/mL, 30 min, 115.2 mW/cm<sup>2</sup>) reduces viability in SW837 colorectal (−50%) and A431 skin carcinoma cells (−92%), with no cytotoxicity toward human skin fibroblasts. Importantly, the SnO<sub><i>x</i></sub> nanoflakes retain both their photothermal efficiency and structural integrity after four cycles of NIR irradiation, demonstrating stability for repeated therapeutic applications. This work presents a green and scalable method to convert NIR-inactive SnS<sub>2</sub> into photothermally active SnO<sub><i>x</i></sub> nanoflakes using only aqueous media and validates SnO<sub><i>x</i></sub> as an efficient, biocompatible PTT agent using low-cost LED sources.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 38","pages":"33749–33763"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SnOx Nanoflakes as Enhanced Near-Infrared Photothermal Therapy Agents Synthesized from Electrochemically Oxidized SnS2 Powders\",\"authors\":\"Hui-Ping Chang,&nbsp;, ,&nbsp;Filipa A. L. S. Silva,&nbsp;, ,&nbsp;Eva Nance,&nbsp;, ,&nbsp;José R. Fernandes,&nbsp;, ,&nbsp;Susana G. Santos,&nbsp;, ,&nbsp;Fernão D. Magalhães,&nbsp;, ,&nbsp;Artur M. Pinto*,&nbsp;, and ,&nbsp;Jean Anne C. Incorvia*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c03135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Near-infrared (NIR) photothermal therapy (PTT) using nanomaterials is a promising strategy for selective cancer treatment. We report two tin-based two-dimensional (2D) nanoflakes─defective SnS<sub>2</sub> (SnS<sub>2–<i>x</i></sub>) and mixed-phase SnO<sub><i>x</i></sub>─synthesized via top-down ultrasonication and electrochemical exfoliation with oxidation, respectively. Both nanoflakes have thicknesses below 20 nm, and their lateral sizes (&lt;400 nm) were confirmed by AFM, DLS, atomic force microscopy, dynamic light scattering, and transmission electron microscopy (TEM). Despite a similar optical band gap (∼1.89 eV), SnO<sub>2</sub> nanoflakes display a significantly enhanced NIR photothermal performance under 810 nm light emitting diode (LED) irradiation. A 3 mg/mL SnO<sub><i>x</i></sub> dispersion increases in temperature by ∼19 °C after 30 min, and a 0.25 mg/mL sample achieves a photothermal conversion efficiency of 93%. X-ray photoelectron spectroscopy and TEM analyses show that SnO<sub><i>x</i></sub> consists of interconnected SnO and SnO<sub>2</sub> nanocrystals (&lt;5 nm), which promote nonradiative energy release due to exciton confinement effects, unlike the planar SnS<sub>2–<i>x</i></sub> nanoflakes that show negligible heating. <i>In vitro</i> studies demonstrate selective cytotoxicity: SnO<sub><i>x</i></sub> combined with NIR light (100–200 μg/mL, 30 min, 115.2 mW/cm<sup>2</sup>) reduces viability in SW837 colorectal (−50%) and A431 skin carcinoma cells (−92%), with no cytotoxicity toward human skin fibroblasts. Importantly, the SnO<sub><i>x</i></sub> nanoflakes retain both their photothermal efficiency and structural integrity after four cycles of NIR irradiation, demonstrating stability for repeated therapeutic applications. This work presents a green and scalable method to convert NIR-inactive SnS<sub>2</sub> into photothermally active SnO<sub><i>x</i></sub> nanoflakes using only aqueous media and validates SnO<sub><i>x</i></sub> as an efficient, biocompatible PTT agent using low-cost LED sources.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 38\",\"pages\":\"33749–33763\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c03135\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c03135","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用纳米材料的近红外光热疗法(PTT)是一种很有前途的选择性癌症治疗策略。我们报道了两种锡基二维(2D)纳米薄片──缺陷SnS2 (SnS2-x)和混合相SnOx──分别通过自上而下超声和电化学氧化剥离合成。通过原子力显微镜、原子力显微镜、动态光散射和透射电子显微镜(TEM)验证了两种纳米薄片的横向尺寸(< 400nm),厚度均在20nm以下。尽管光学带隙相似(约1.89 eV),但在810 nm发光二极管(LED)照射下,SnO2纳米片显示出显著增强的近红外光热性能。30min后,3mg /mL SnOx分散体温度升高~ 19°C, 0.25 mg/mL样品的光热转换效率为93%。x射线光电子能谱和透射电镜分析表明,SnOx由连接的snono和SnO2纳米晶体(<5 nm)组成,与平面SnS2-x纳米片的加热可以忽略不计不同,SnOx由激子约束效应促进非辐射能量释放。体外研究显示选择性细胞毒性:SnOx联合近红外光(100-200 μg/mL, 30 min, 115.2 mW/cm2)可降低SW837结直肠癌细胞(-50%)和A431皮肤癌细胞(-92%)的活力,对人皮肤成纤维细胞无细胞毒性。重要的是,SnOx纳米片在经过四个周期的近红外照射后,仍然保持其光热效率和结构完整性,证明了重复治疗应用的稳定性。本研究提出了一种绿色且可扩展的方法,将nir无活性的SnS2仅在水介质中转化为光热活性的SnOx纳米片,并验证了SnOx是一种高效的、生物相容性的PTT剂,使用低成本的LED光源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SnOx Nanoflakes as Enhanced Near-Infrared Photothermal Therapy Agents Synthesized from Electrochemically Oxidized SnS2 Powders

SnOx Nanoflakes as Enhanced Near-Infrared Photothermal Therapy Agents Synthesized from Electrochemically Oxidized SnS2 Powders

Near-infrared (NIR) photothermal therapy (PTT) using nanomaterials is a promising strategy for selective cancer treatment. We report two tin-based two-dimensional (2D) nanoflakes─defective SnS2 (SnS2–x) and mixed-phase SnOx─synthesized via top-down ultrasonication and electrochemical exfoliation with oxidation, respectively. Both nanoflakes have thicknesses below 20 nm, and their lateral sizes (<400 nm) were confirmed by AFM, DLS, atomic force microscopy, dynamic light scattering, and transmission electron microscopy (TEM). Despite a similar optical band gap (∼1.89 eV), SnO2 nanoflakes display a significantly enhanced NIR photothermal performance under 810 nm light emitting diode (LED) irradiation. A 3 mg/mL SnOx dispersion increases in temperature by ∼19 °C after 30 min, and a 0.25 mg/mL sample achieves a photothermal conversion efficiency of 93%. X-ray photoelectron spectroscopy and TEM analyses show that SnOx consists of interconnected SnO and SnO2 nanocrystals (<5 nm), which promote nonradiative energy release due to exciton confinement effects, unlike the planar SnS2–x nanoflakes that show negligible heating. In vitro studies demonstrate selective cytotoxicity: SnOx combined with NIR light (100–200 μg/mL, 30 min, 115.2 mW/cm2) reduces viability in SW837 colorectal (−50%) and A431 skin carcinoma cells (−92%), with no cytotoxicity toward human skin fibroblasts. Importantly, the SnOx nanoflakes retain both their photothermal efficiency and structural integrity after four cycles of NIR irradiation, demonstrating stability for repeated therapeutic applications. This work presents a green and scalable method to convert NIR-inactive SnS2 into photothermally active SnOx nanoflakes using only aqueous media and validates SnOx as an efficient, biocompatible PTT agent using low-cost LED sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信