Travis S. Metcalfe, Jennifer L. van Saders, Marc H. Pinsonneault, Thomas R. Ayres, Oleg Kochukhov, Keivan G. Stassun, Adam J. Finley, Victor See, Ilya V. Ilyin and Klaus G. Strassmeier
{"title":"减弱的磁制动标志着全球恒星发电机的崩溃","authors":"Travis S. Metcalfe, Jennifer L. van Saders, Marc H. Pinsonneault, Thomas R. Ayres, Oleg Kochukhov, Keivan G. Stassun, Adam J. Finley, Victor See, Ilya V. Ilyin and Klaus G. Strassmeier","doi":"10.3847/2041-8213/ae03bc","DOIUrl":null,"url":null,"abstract":"Weakened magnetic braking (WMB) was originally proposed in 2016 to explain anomalously rapid rotation in old field stars observed by the Kepler mission. The proximate cause was suggested to be a transition in magnetic morphology from larger to smaller spatial scales. In a series of papers over the past 5 yr, we have collected spectropolarimetric measurements to constrain the large-scale magnetic fields for a sample of stars spanning this transition, including a range of spectral types from late F to early K. During this time, we gradually improved our methods for estimating the wind braking torque in each of our targets, and for evaluating the associated uncertainties. Here, we reanalyze the entire sample with a focus on uniformity for the relevant observational inputs. We supplement the sample with two additional active stars to provide more context for the evolution of wind braking torque with stellar Rossby number (Ro). The results demonstrate unambiguously that standard spin-down models can reproduce the evolution of wind braking torque for active stars, but WMB is required to explain the subsequent abrupt decrease in torque as Ro approaches a critical value for dynamo excitation. This transition is seen in both the large-scale magnetic field and the X-ray luminosity, indicating weakened coronal heating. We interpret these transitions as evidence of a rotational threshold for the influence of Coriolis forces on global convective patterns and the resulting inefficiency of the global stellar dynamo.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakened Magnetic Braking Signals the Collapse of the Global Stellar Dynamo\",\"authors\":\"Travis S. Metcalfe, Jennifer L. van Saders, Marc H. Pinsonneault, Thomas R. Ayres, Oleg Kochukhov, Keivan G. Stassun, Adam J. Finley, Victor See, Ilya V. Ilyin and Klaus G. Strassmeier\",\"doi\":\"10.3847/2041-8213/ae03bc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weakened magnetic braking (WMB) was originally proposed in 2016 to explain anomalously rapid rotation in old field stars observed by the Kepler mission. The proximate cause was suggested to be a transition in magnetic morphology from larger to smaller spatial scales. In a series of papers over the past 5 yr, we have collected spectropolarimetric measurements to constrain the large-scale magnetic fields for a sample of stars spanning this transition, including a range of spectral types from late F to early K. During this time, we gradually improved our methods for estimating the wind braking torque in each of our targets, and for evaluating the associated uncertainties. Here, we reanalyze the entire sample with a focus on uniformity for the relevant observational inputs. We supplement the sample with two additional active stars to provide more context for the evolution of wind braking torque with stellar Rossby number (Ro). The results demonstrate unambiguously that standard spin-down models can reproduce the evolution of wind braking torque for active stars, but WMB is required to explain the subsequent abrupt decrease in torque as Ro approaches a critical value for dynamo excitation. This transition is seen in both the large-scale magnetic field and the X-ray luminosity, indicating weakened coronal heating. We interpret these transitions as evidence of a rotational threshold for the influence of Coriolis forces on global convective patterns and the resulting inefficiency of the global stellar dynamo.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ae03bc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ae03bc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weakened Magnetic Braking Signals the Collapse of the Global Stellar Dynamo
Weakened magnetic braking (WMB) was originally proposed in 2016 to explain anomalously rapid rotation in old field stars observed by the Kepler mission. The proximate cause was suggested to be a transition in magnetic morphology from larger to smaller spatial scales. In a series of papers over the past 5 yr, we have collected spectropolarimetric measurements to constrain the large-scale magnetic fields for a sample of stars spanning this transition, including a range of spectral types from late F to early K. During this time, we gradually improved our methods for estimating the wind braking torque in each of our targets, and for evaluating the associated uncertainties. Here, we reanalyze the entire sample with a focus on uniformity for the relevant observational inputs. We supplement the sample with two additional active stars to provide more context for the evolution of wind braking torque with stellar Rossby number (Ro). The results demonstrate unambiguously that standard spin-down models can reproduce the evolution of wind braking torque for active stars, but WMB is required to explain the subsequent abrupt decrease in torque as Ro approaches a critical value for dynamo excitation. This transition is seen in both the large-scale magnetic field and the X-ray luminosity, indicating weakened coronal heating. We interpret these transitions as evidence of a rotational threshold for the influence of Coriolis forces on global convective patterns and the resulting inefficiency of the global stellar dynamo.