Finn Gude, Annkathrin Bohne, Maria Dell, Jonathan Franke, Kyle L. Dunbar, Michael Groll, Christian Hertweck
{"title":"远端肽延伸由蛋白酶样连接酶和两个不同的载体蛋白","authors":"Finn Gude, Annkathrin Bohne, Maria Dell, Jonathan Franke, Kyle L. Dunbar, Michael Groll, Christian Hertweck","doi":"10.1016/j.chempr.2025.102740","DOIUrl":null,"url":null,"abstract":"Closthioamide (CTA) is a potent antibiotic with a unique polythioamide scaffold produced by <em>Ruminiclostridium cellulolyticum</em>. Unlike classical non-ribosomal peptide synthetases (NRPSs), which use modular adenylation and condensation domains, CTA biosynthesis proceeds through non-canonical standalone enzymes. Central to this process is the papain-like ligase CtaG, which catalyzes amide bond formation between two distinct peptidyl carrier proteins (PCPs): CtaH, presenting para-hydroxybenzoic acid (PHBA), and CtaE, carrying a tri-β-alanine ((βAla)<sub>3</sub>) chain. Using biochemical assays, chemical probes, crystallography, and mutational analysis, we show that CtaG operates via a ping-pong mechanism involving an enzyme-bound intermediate. A single substrate tunnel mediates directional transfer, enabling distal chain elongation that mirrors solid-phase peptide synthesis. Structure-based genome mining revealed homologous enzymes in the biosynthetic pathways of petrobactin, butirosin, and methylolanthanin. Together, our findings uncover a previously overlooked class of thiotemplated ligases and provide a mechanistic blueprint for engineering ribosome-independent peptide assembly lines.","PeriodicalId":268,"journal":{"name":"Chem","volume":"36 1","pages":""},"PeriodicalIF":19.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distal peptide elongation by a protease-like ligase and two distinct carrier proteins\",\"authors\":\"Finn Gude, Annkathrin Bohne, Maria Dell, Jonathan Franke, Kyle L. Dunbar, Michael Groll, Christian Hertweck\",\"doi\":\"10.1016/j.chempr.2025.102740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Closthioamide (CTA) is a potent antibiotic with a unique polythioamide scaffold produced by <em>Ruminiclostridium cellulolyticum</em>. Unlike classical non-ribosomal peptide synthetases (NRPSs), which use modular adenylation and condensation domains, CTA biosynthesis proceeds through non-canonical standalone enzymes. Central to this process is the papain-like ligase CtaG, which catalyzes amide bond formation between two distinct peptidyl carrier proteins (PCPs): CtaH, presenting para-hydroxybenzoic acid (PHBA), and CtaE, carrying a tri-β-alanine ((βAla)<sub>3</sub>) chain. Using biochemical assays, chemical probes, crystallography, and mutational analysis, we show that CtaG operates via a ping-pong mechanism involving an enzyme-bound intermediate. A single substrate tunnel mediates directional transfer, enabling distal chain elongation that mirrors solid-phase peptide synthesis. Structure-based genome mining revealed homologous enzymes in the biosynthetic pathways of petrobactin, butirosin, and methylolanthanin. Together, our findings uncover a previously overlooked class of thiotemplated ligases and provide a mechanistic blueprint for engineering ribosome-independent peptide assembly lines.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":19.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2025.102740\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102740","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Distal peptide elongation by a protease-like ligase and two distinct carrier proteins
Closthioamide (CTA) is a potent antibiotic with a unique polythioamide scaffold produced by Ruminiclostridium cellulolyticum. Unlike classical non-ribosomal peptide synthetases (NRPSs), which use modular adenylation and condensation domains, CTA biosynthesis proceeds through non-canonical standalone enzymes. Central to this process is the papain-like ligase CtaG, which catalyzes amide bond formation between two distinct peptidyl carrier proteins (PCPs): CtaH, presenting para-hydroxybenzoic acid (PHBA), and CtaE, carrying a tri-β-alanine ((βAla)3) chain. Using biochemical assays, chemical probes, crystallography, and mutational analysis, we show that CtaG operates via a ping-pong mechanism involving an enzyme-bound intermediate. A single substrate tunnel mediates directional transfer, enabling distal chain elongation that mirrors solid-phase peptide synthesis. Structure-based genome mining revealed homologous enzymes in the biosynthetic pathways of petrobactin, butirosin, and methylolanthanin. Together, our findings uncover a previously overlooked class of thiotemplated ligases and provide a mechanistic blueprint for engineering ribosome-independent peptide assembly lines.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.