预测调控基因组

IF 52 1区 生物学 Q1 GENETICS & HEREDITY
Sarthak Tiwari, Alireza Karbalayghareh, Christina S. Leslie
{"title":"预测调控基因组","authors":"Sarthak Tiwari, Alireza Karbalayghareh, Christina S. Leslie","doi":"10.1038/s41576-025-00887-2","DOIUrl":null,"url":null,"abstract":"Deep learning models have made impressive strides in decoding the regulatory genome, but key challenges remain unsolved. In this Comment, the authors overview the latest deep learning models for predicting regulatory function from genomic sequence and highlight key topics going forward, including the trade-off between specialized and general models, multitasking across cell types, and training on genetic variation and diverse species.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"26 10","pages":"659-660"},"PeriodicalIF":52.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the regulatory genome\",\"authors\":\"Sarthak Tiwari, Alireza Karbalayghareh, Christina S. Leslie\",\"doi\":\"10.1038/s41576-025-00887-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models have made impressive strides in decoding the regulatory genome, but key challenges remain unsolved. In this Comment, the authors overview the latest deep learning models for predicting regulatory function from genomic sequence and highlight key topics going forward, including the trade-off between specialized and general models, multitasking across cell types, and training on genetic variation and diverse species.\",\"PeriodicalId\":19067,\"journal\":{\"name\":\"Nature Reviews Genetics\",\"volume\":\"26 10\",\"pages\":\"659-660\"},\"PeriodicalIF\":52.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41576-025-00887-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41576-025-00887-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型在解码调控基因组方面取得了令人印象深刻的进展,但关键挑战仍未解决。在这篇评论中,作者概述了用于预测基因组序列调控功能的最新深度学习模型,并强调了未来的关键主题,包括专业模型和通用模型之间的权衡,跨细胞类型的多任务处理,以及遗传变异和物种多样性的训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the regulatory genome
Deep learning models have made impressive strides in decoding the regulatory genome, but key challenges remain unsolved. In this Comment, the authors overview the latest deep learning models for predicting regulatory function from genomic sequence and highlight key topics going forward, including the trade-off between specialized and general models, multitasking across cell types, and training on genetic variation and diverse species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Genetics
Nature Reviews Genetics 生物-遗传学
CiteScore
57.40
自引率
0.50%
发文量
113
审稿时长
6-12 weeks
期刊介绍: At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish. Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience. As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信