一个用于计算建模任务的多机构腹腔镜阑尾切除术视频数据集。

Fiona R Kolbinger, Max Kirchner, Kevin Pfeiffer, Sebastian Bodenstedt, Alexander C Jenke, Julia Barthel, Matthias Carstens, Karolin Dehlke, Sophia Dietz, Sotirios Emmanouilidis, Guido Fitze, Martin Freitag, Fabian Holderried, Thorsten Jacobi, Weam Kanjo, Linda Leitermann, Sören Torge Mees, Steffen Pistorius, Conrad Prudlo, Astrid Seiberth, Jurek Schultz, Karolin Thiel, Daniel Ziehn, Stefanie Speidel, Jürgen Weitz, Jakob Nikolas Kather, Marius Distler, Oliver Lester Saldanha
{"title":"一个用于计算建模任务的多机构腹腔镜阑尾切除术视频数据集。","authors":"Fiona R Kolbinger, Max Kirchner, Kevin Pfeiffer, Sebastian Bodenstedt, Alexander C Jenke, Julia Barthel, Matthias Carstens, Karolin Dehlke, Sophia Dietz, Sotirios Emmanouilidis, Guido Fitze, Martin Freitag, Fabian Holderried, Thorsten Jacobi, Weam Kanjo, Linda Leitermann, Sören Torge Mees, Steffen Pistorius, Conrad Prudlo, Astrid Seiberth, Jurek Schultz, Karolin Thiel, Daniel Ziehn, Stefanie Speidel, Jürgen Weitz, Jakob Nikolas Kather, Marius Distler, Oliver Lester Saldanha","doi":"10.1101/2025.09.05.25335174","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The limited availability of diverse and representative training data poses a critical barrier to the development of clinically relevant computational tools for intraoperative surgical decision support. Surgical procedures are not routinely recorded, and annotation requires domain expertise, resulting in a scarcity of open-access surgical video datasets with high-quality annotations. Existing datasets are typically limited to single institutions and specific procedures, such as cholecystectomy, and rarely comprise patient-level metadata like demographic characteristics, disease history, or laboratory parameters.</p><p><strong>Methods: </strong>The Appendix300 dataset comprises 330 laparoscopic surgery recordings, including 325 full-length laparoscopic appendectomies and 5 control recordings from non-appendectomy procedures in pediatric and adult patients treated at five German centers. The dataset includes patient-level clinical metadata (demographics, medical history, clinical symptoms, laboratory parameters, and histopathological findings), as well as standardized expert annotations of the laparoscopic grade of appendicitis.</p><p><strong>Results: </strong>Appendix300 currently represents the largest publicly available collection of surgical video data with patient metadata and the first curated dataset of laparoscopic appendectomies. It enables novel validation tasks for computer vision in surgery, including the classification of appendicitis severity and the detection of appendiceal perforation. Technical validation of the laparoscopic appendicitis grade annotations showed substantial interrater agreement (weighted Cohen's κ = 0.615).</p><p><strong>Conclusion: </strong>The Appendix300 dataset expands the scope of surgical data science by integrating video data with clinical and pathological metadata across institutions. It enables new and clinically relevant patient-level validation tasks for computer vision in laparoscopic surgery and facilitates decentralized learning approaches, overall enhancing the breadth and translational relevance of AI-based surgical video analysis.</p><p><strong>Dataset description: </strong>Appendix300 is a multi-institutional dataset comprising 330 laparoscopic surgery recordings, including 325 appendectomies and 5 control cases, detailed patient-level metadata (demographics, medical history, clinical symptoms, laboratory parameters, and histopathological findings), and expert annotations of appendicitis severity. It enables novel validation tasks for surgical AI, such as inflammation grading and perforation detection, and supports decentralized learning across diverse patient populations.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424895/pdf/","citationCount":"0","resultStr":"{\"title\":\"Appendix300: A multi-institutional laparoscopic appendectomy video dataset for computational modeling tasks.\",\"authors\":\"Fiona R Kolbinger, Max Kirchner, Kevin Pfeiffer, Sebastian Bodenstedt, Alexander C Jenke, Julia Barthel, Matthias Carstens, Karolin Dehlke, Sophia Dietz, Sotirios Emmanouilidis, Guido Fitze, Martin Freitag, Fabian Holderried, Thorsten Jacobi, Weam Kanjo, Linda Leitermann, Sören Torge Mees, Steffen Pistorius, Conrad Prudlo, Astrid Seiberth, Jurek Schultz, Karolin Thiel, Daniel Ziehn, Stefanie Speidel, Jürgen Weitz, Jakob Nikolas Kather, Marius Distler, Oliver Lester Saldanha\",\"doi\":\"10.1101/2025.09.05.25335174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The limited availability of diverse and representative training data poses a critical barrier to the development of clinically relevant computational tools for intraoperative surgical decision support. Surgical procedures are not routinely recorded, and annotation requires domain expertise, resulting in a scarcity of open-access surgical video datasets with high-quality annotations. Existing datasets are typically limited to single institutions and specific procedures, such as cholecystectomy, and rarely comprise patient-level metadata like demographic characteristics, disease history, or laboratory parameters.</p><p><strong>Methods: </strong>The Appendix300 dataset comprises 330 laparoscopic surgery recordings, including 325 full-length laparoscopic appendectomies and 5 control recordings from non-appendectomy procedures in pediatric and adult patients treated at five German centers. The dataset includes patient-level clinical metadata (demographics, medical history, clinical symptoms, laboratory parameters, and histopathological findings), as well as standardized expert annotations of the laparoscopic grade of appendicitis.</p><p><strong>Results: </strong>Appendix300 currently represents the largest publicly available collection of surgical video data with patient metadata and the first curated dataset of laparoscopic appendectomies. It enables novel validation tasks for computer vision in surgery, including the classification of appendicitis severity and the detection of appendiceal perforation. Technical validation of the laparoscopic appendicitis grade annotations showed substantial interrater agreement (weighted Cohen's κ = 0.615).</p><p><strong>Conclusion: </strong>The Appendix300 dataset expands the scope of surgical data science by integrating video data with clinical and pathological metadata across institutions. It enables new and clinically relevant patient-level validation tasks for computer vision in laparoscopic surgery and facilitates decentralized learning approaches, overall enhancing the breadth and translational relevance of AI-based surgical video analysis.</p><p><strong>Dataset description: </strong>Appendix300 is a multi-institutional dataset comprising 330 laparoscopic surgery recordings, including 325 appendectomies and 5 control cases, detailed patient-level metadata (demographics, medical history, clinical symptoms, laboratory parameters, and histopathological findings), and expert annotations of appendicitis severity. It enables novel validation tasks for surgical AI, such as inflammation grading and perforation detection, and supports decentralized learning across diverse patient populations.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424895/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.09.05.25335174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.05.25335174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多样化和代表性训练数据的有限可用性对临床相关计算工具的发展构成了关键障碍,这些计算工具用于术中手术决策支持。由于外科手术没有常规记录,数据注释往往需要领域知识,现有的具有高质量注释的开放获取外科视频数据集仅可用于有限数量的外科手术,例如胆囊切除术,并且通常来自单一机构。appendx300是一个综合数据集,包括330个手术过程的视频片段,其中包括在德国5个中心治疗的儿童和成人腹腔镜阑尾切除术的312个完整记录,以及在非阑尾切除术腹腔镜手术中收集的18个非炎症阑尾的对照记录。每个记录的临床元数据包括患者人口统计、病史、临床症状、术前实验室参数和术后组织病理学结果。此外,我们根据术中表现提供阑尾炎等级的注释。该数据集为腹腔镜手术中的计算机视觉提供了新的和临床相关的验证任务,从而增强了基于人工智能的手术视频分析的广度和翻译相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Appendix300: A multi-institutional laparoscopic appendectomy video dataset for computational modeling tasks.

Appendix300: A multi-institutional laparoscopic appendectomy video dataset for computational modeling tasks.

Appendix300: A multi-institutional laparoscopic appendectomy video dataset for computational modeling tasks.

Appendix300: A multi-institutional laparoscopic appendectomy video dataset for computational modeling tasks.

Background: The limited availability of diverse and representative training data poses a critical barrier to the development of clinically relevant computational tools for intraoperative surgical decision support. Surgical procedures are not routinely recorded, and annotation requires domain expertise, resulting in a scarcity of open-access surgical video datasets with high-quality annotations. Existing datasets are typically limited to single institutions and specific procedures, such as cholecystectomy, and rarely comprise patient-level metadata like demographic characteristics, disease history, or laboratory parameters.

Methods: The Appendix300 dataset comprises 330 laparoscopic surgery recordings, including 325 full-length laparoscopic appendectomies and 5 control recordings from non-appendectomy procedures in pediatric and adult patients treated at five German centers. The dataset includes patient-level clinical metadata (demographics, medical history, clinical symptoms, laboratory parameters, and histopathological findings), as well as standardized expert annotations of the laparoscopic grade of appendicitis.

Results: Appendix300 currently represents the largest publicly available collection of surgical video data with patient metadata and the first curated dataset of laparoscopic appendectomies. It enables novel validation tasks for computer vision in surgery, including the classification of appendicitis severity and the detection of appendiceal perforation. Technical validation of the laparoscopic appendicitis grade annotations showed substantial interrater agreement (weighted Cohen's κ = 0.615).

Conclusion: The Appendix300 dataset expands the scope of surgical data science by integrating video data with clinical and pathological metadata across institutions. It enables new and clinically relevant patient-level validation tasks for computer vision in laparoscopic surgery and facilitates decentralized learning approaches, overall enhancing the breadth and translational relevance of AI-based surgical video analysis.

Dataset description: Appendix300 is a multi-institutional dataset comprising 330 laparoscopic surgery recordings, including 325 appendectomies and 5 control cases, detailed patient-level metadata (demographics, medical history, clinical symptoms, laboratory parameters, and histopathological findings), and expert annotations of appendicitis severity. It enables novel validation tasks for surgical AI, such as inflammation grading and perforation detection, and supports decentralized learning across diverse patient populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信