使用先进弥散MRI和脑脊液生物标志物进行轻度认知障碍的机器学习诊断。

IF 4.4 Q1 CLINICAL NEUROLOGY
Alexander Y Guo, John P Laporte, Kavita Singh, Jonghyun Bae, Keagan Bergeron, Angelique de Rouen, Noam Y Fox, Nathan Zhang, Isabel Carino-Bazan, Mary E Faulkner, Rafael de Cabo, Dan Benjamini, Zhaoyuan Gong, Mustapha Bouhrara
{"title":"使用先进弥散MRI和脑脊液生物标志物进行轻度认知障碍的机器学习诊断。","authors":"Alexander Y Guo, John P Laporte, Kavita Singh, Jonghyun Bae, Keagan Bergeron, Angelique de Rouen, Noam Y Fox, Nathan Zhang, Isabel Carino-Bazan, Mary E Faulkner, Rafael de Cabo, Dan Benjamini, Zhaoyuan Gong, Mustapha Bouhrara","doi":"10.1002/dad2.70182","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Machine learning applied to neuroimaging can help with medical diagnosis and early detection by identifying biomarkers of subtle changes in brain structure and function. The effectiveness of advanced diffusion MRI (dMRI) methods for pre-dementia classification remains largely unexplored, particularly when combined with CSF biomarkers.</p><p><strong>Methods: </strong>We implemented XGBoost machine learning models to evaluate the classification potential of dMRI parameters (derived using NODDI, C-NODDI, MAP, or SMI), CSF biomarkers of Alzheimer's pathology (Tau, pTau, Aβ42, Aβ40), and pairwise dMRI + CSF combinations in distinguishing cognitive normality from mild cognitive impairment.</p><p><strong>Results: </strong>MAP-RTAP (AUC = 0.78) and pTau/Aβ42 (AUC = 0.76) were the best performing individual biomarkers. Combining C-NDI derived using C-NODDI and Aβ42/Aβ40 achieved the highest performance (AUC = 0.84) and accuracy (0.84), while other combinations optimized either sensitivity (0.93) or specificity (0.88).</p><p><strong>Discussion: </strong>dMRI biomarkers demonstrate comparable performance to CSF biomarkers, with notable improvements achieved when combined. This study highlights dMRI's effectiveness for enhancing early AD detection.</p><p><strong>Highlights: </strong>Advanced multishell diffusion MRI provides equivalent performance as CSF biomarkers in classifying MCICombining diffusion MRI and CSF biomarkers improves classification performanceStatistical diffusion MRI models perform best when used individually to classify MCIThe pTau/Aβ42 ratio outperforms other individual CSF biomarkers in MCI diagnosisBiophysical diffusion MRI models achieve the best performance when combined with CSF data.</p>","PeriodicalId":53226,"journal":{"name":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","volume":"17 3","pages":"e70182"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426029/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning diagnosis of mild cognitive impairment using advanced diffusion MRI and CSF biomarkers.\",\"authors\":\"Alexander Y Guo, John P Laporte, Kavita Singh, Jonghyun Bae, Keagan Bergeron, Angelique de Rouen, Noam Y Fox, Nathan Zhang, Isabel Carino-Bazan, Mary E Faulkner, Rafael de Cabo, Dan Benjamini, Zhaoyuan Gong, Mustapha Bouhrara\",\"doi\":\"10.1002/dad2.70182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Machine learning applied to neuroimaging can help with medical diagnosis and early detection by identifying biomarkers of subtle changes in brain structure and function. The effectiveness of advanced diffusion MRI (dMRI) methods for pre-dementia classification remains largely unexplored, particularly when combined with CSF biomarkers.</p><p><strong>Methods: </strong>We implemented XGBoost machine learning models to evaluate the classification potential of dMRI parameters (derived using NODDI, C-NODDI, MAP, or SMI), CSF biomarkers of Alzheimer's pathology (Tau, pTau, Aβ42, Aβ40), and pairwise dMRI + CSF combinations in distinguishing cognitive normality from mild cognitive impairment.</p><p><strong>Results: </strong>MAP-RTAP (AUC = 0.78) and pTau/Aβ42 (AUC = 0.76) were the best performing individual biomarkers. Combining C-NDI derived using C-NODDI and Aβ42/Aβ40 achieved the highest performance (AUC = 0.84) and accuracy (0.84), while other combinations optimized either sensitivity (0.93) or specificity (0.88).</p><p><strong>Discussion: </strong>dMRI biomarkers demonstrate comparable performance to CSF biomarkers, with notable improvements achieved when combined. This study highlights dMRI's effectiveness for enhancing early AD detection.</p><p><strong>Highlights: </strong>Advanced multishell diffusion MRI provides equivalent performance as CSF biomarkers in classifying MCICombining diffusion MRI and CSF biomarkers improves classification performanceStatistical diffusion MRI models perform best when used individually to classify MCIThe pTau/Aβ42 ratio outperforms other individual CSF biomarkers in MCI diagnosisBiophysical diffusion MRI models achieve the best performance when combined with CSF data.</p>\",\"PeriodicalId\":53226,\"journal\":{\"name\":\"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring\",\"volume\":\"17 3\",\"pages\":\"e70182\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426029/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/dad2.70182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/dad2.70182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介:机器学习应用于神经成像可以通过识别大脑结构和功能的细微变化的生物标志物来帮助医学诊断和早期检测。高级弥散MRI (dMRI)方法对痴呆前期分类的有效性在很大程度上仍未被探索,特别是当与脑脊液生物标志物结合使用时。方法:我们使用XGBoost机器学习模型来评估dMRI参数(通过NODDI、C-NODDI、MAP或SMI得出)、阿尔茨海默病病理CSF生物标志物(Tau、pTau、Aβ42、Aβ40)以及dMRI + CSF配对组合在区分认知正常和轻度认知障碍方面的分类潜力。结果:MAP-RTAP (AUC = 0.78)和pTau/ a - β42 (AUC = 0.76)是表现最佳的个体生物标志物。结合C-NODDI和a - β42/ a - β40衍生的C-NDI获得了最高的性能(AUC = 0.84)和准确性(0.84),而其他组合的灵敏度(0.93)和特异性(0.88)均较优。讨论:dMRI生物标志物表现出与CSF生物标志物相当的性能,当联合使用时取得了显着的改善。这项研究强调了dMRI在增强早期AD检测方面的有效性。重点:先进的多壳扩散MRI在MCI分类中提供了与脑脊液生物标志物相当的性能;扩散MRI和脑脊液生物标志物相结合提高了分类性能;统计扩散MRI模型在单独用于MCI分类时表现最佳;pTau/ a - β42比值在MCI诊断中优于其他单个脑脊液生物标志物;生物物理扩散MRI模型在与脑脊液数据相结合时表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning diagnosis of mild cognitive impairment using advanced diffusion MRI and CSF biomarkers.

Introduction: Machine learning applied to neuroimaging can help with medical diagnosis and early detection by identifying biomarkers of subtle changes in brain structure and function. The effectiveness of advanced diffusion MRI (dMRI) methods for pre-dementia classification remains largely unexplored, particularly when combined with CSF biomarkers.

Methods: We implemented XGBoost machine learning models to evaluate the classification potential of dMRI parameters (derived using NODDI, C-NODDI, MAP, or SMI), CSF biomarkers of Alzheimer's pathology (Tau, pTau, Aβ42, Aβ40), and pairwise dMRI + CSF combinations in distinguishing cognitive normality from mild cognitive impairment.

Results: MAP-RTAP (AUC = 0.78) and pTau/Aβ42 (AUC = 0.76) were the best performing individual biomarkers. Combining C-NDI derived using C-NODDI and Aβ42/Aβ40 achieved the highest performance (AUC = 0.84) and accuracy (0.84), while other combinations optimized either sensitivity (0.93) or specificity (0.88).

Discussion: dMRI biomarkers demonstrate comparable performance to CSF biomarkers, with notable improvements achieved when combined. This study highlights dMRI's effectiveness for enhancing early AD detection.

Highlights: Advanced multishell diffusion MRI provides equivalent performance as CSF biomarkers in classifying MCICombining diffusion MRI and CSF biomarkers improves classification performanceStatistical diffusion MRI models perform best when used individually to classify MCIThe pTau/Aβ42 ratio outperforms other individual CSF biomarkers in MCI diagnosisBiophysical diffusion MRI models achieve the best performance when combined with CSF data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
7.50%
发文量
101
审稿时长
8 weeks
期刊介绍: Alzheimer''s & Dementia: Diagnosis, Assessment & Disease Monitoring (DADM) is an open access, peer-reviewed, journal from the Alzheimer''s Association® that will publish new research that reports the discovery, development and validation of instruments, technologies, algorithms, and innovative processes. Papers will cover a range of topics interested in the early and accurate detection of individuals with memory complaints and/or among asymptomatic individuals at elevated risk for various forms of memory disorders. The expectation for published papers will be to translate fundamental knowledge about the neurobiology of the disease into practical reports that describe both the conceptual and methodological aspects of the submitted scientific inquiry. Published topics will explore the development of biomarkers, surrogate markers, and conceptual/methodological challenges. Publication priority will be given to papers that 1) describe putative surrogate markers that accurately track disease progression, 2) biomarkers that fulfill international regulatory requirements, 3) reports from large, well-characterized population-based cohorts that comprise the heterogeneity and diversity of asymptomatic individuals and 4) algorithmic development that considers multi-marker arrays (e.g., integrated-omics, genetics, biofluids, imaging, etc.) and advanced computational analytics and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信