整合遥感、地面站和地理空间数据的机器学习模型预测意大利托斯卡纳精细分辨率的每日气温。

IF 4.1 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Remote Sensing Pub Date : 2025-09-02 DOI:10.3390/rs17173052
Giorgio Limoncella, Denise Feurer, Dominic Roye, Kees de Hoogh, Arturo de la Cruz, Antonio Gasparrini, Rochelle Schneider, Francesco Pirotti, Dolores Catelan, Massimo Stafoggia, Francesca de'Donato, Giulio Biscardi, Chiara Marzi, Michela Baccini, Francesco Sera
{"title":"整合遥感、地面站和地理空间数据的机器学习模型预测意大利托斯卡纳精细分辨率的每日气温。","authors":"Giorgio Limoncella, Denise Feurer, Dominic Roye, Kees de Hoogh, Arturo de la Cruz, Antonio Gasparrini, Rochelle Schneider, Francesco Pirotti, Dolores Catelan, Massimo Stafoggia, Francesca de'Donato, Giulio Biscardi, Chiara Marzi, Michela Baccini, Francesco Sera","doi":"10.3390/rs17173052","DOIUrl":null,"url":null,"abstract":"<p><p>Heat-related morbidity and mortality are increasing due to climate change, emphasizing the need to identify vulnerable areas and people exposed to extreme temperatures. To improve heat stress impact assessment, we developed a replicable machine learning model that integrates remote sensing, ground station, and geospatial data to estimate daily air temperature at a spatial resolution of 100 m <i>×</i> 100 m across the region of Tuscany, Italy. Using a two-stage approach, we first imputed missing land surface temperature data from MODIS using gradient-boosted trees and spatio-temporal predictors. Then, we modeled daily maximum and minimum air temperatures by incorporating monitoring station observations, satellite-derived data (MODIS, Landsat 8), topography, land cover, meteorological variables (ERA5-land), and vegetation indices (NDVI). The model achieved high predictive accuracy, with R<sup>2</sup> values of 0.95 for Tmax and 0.92 for Tmin, and root mean square errors (RMSE) of 1.95 °C and 1.96 °C, respectively. It effectively captured both temporal (R<sup>2</sup>: 0.95; 0.94) and spatial (R<sup>2</sup>: 0.92; 0.72) temperature variations, allowing for the creation of high-resolution maps. These results highlight the potential of integrating Earth Observation and machine learning to generate high-resolution temperature maps, offering valuable insights for urban planning, climate adaptation, and epidemiological studies on heat-related health effects.</p>","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"17 17","pages":"3052"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7618111/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Model Integrating Remote Sensing, Ground Station, and Geospatial Data to Predict Fine-Resolution Daily Air Temperature for Tuscany, Italy.\",\"authors\":\"Giorgio Limoncella, Denise Feurer, Dominic Roye, Kees de Hoogh, Arturo de la Cruz, Antonio Gasparrini, Rochelle Schneider, Francesco Pirotti, Dolores Catelan, Massimo Stafoggia, Francesca de'Donato, Giulio Biscardi, Chiara Marzi, Michela Baccini, Francesco Sera\",\"doi\":\"10.3390/rs17173052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heat-related morbidity and mortality are increasing due to climate change, emphasizing the need to identify vulnerable areas and people exposed to extreme temperatures. To improve heat stress impact assessment, we developed a replicable machine learning model that integrates remote sensing, ground station, and geospatial data to estimate daily air temperature at a spatial resolution of 100 m <i>×</i> 100 m across the region of Tuscany, Italy. Using a two-stage approach, we first imputed missing land surface temperature data from MODIS using gradient-boosted trees and spatio-temporal predictors. Then, we modeled daily maximum and minimum air temperatures by incorporating monitoring station observations, satellite-derived data (MODIS, Landsat 8), topography, land cover, meteorological variables (ERA5-land), and vegetation indices (NDVI). The model achieved high predictive accuracy, with R<sup>2</sup> values of 0.95 for Tmax and 0.92 for Tmin, and root mean square errors (RMSE) of 1.95 °C and 1.96 °C, respectively. It effectively captured both temporal (R<sup>2</sup>: 0.95; 0.94) and spatial (R<sup>2</sup>: 0.92; 0.72) temperature variations, allowing for the creation of high-resolution maps. These results highlight the potential of integrating Earth Observation and machine learning to generate high-resolution temperature maps, offering valuable insights for urban planning, climate adaptation, and epidemiological studies on heat-related health effects.</p>\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"17 17\",\"pages\":\"3052\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7618111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs17173052\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs17173052","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于气候变化,与热有关的发病率和死亡率正在增加,这强调需要确定易受极端温度影响的地区和人群。为了改进热应激影响评估,我们开发了一个可复制的机器学习模型,该模型集成了遥感、地面站和地理空间数据,以估计意大利托斯卡纳地区100米× 100米的空间分辨率的每日气温。采用两阶段方法,我们首先使用梯度增强树和时空预测因子从MODIS中估算缺失的地表温度数据。然后,我们结合监测站观测、卫星衍生数据(MODIS、Landsat 8)、地形、土地覆盖、气象变量(ERA5-land)和植被指数(NDVI),模拟了日最高和最低气温。该模型具有较高的预测精度,Tmax和Tmin的R2分别为0.95和0.92,均方根误差(RMSE)分别为1.95°C和1.96°C。它有效地捕获了时间(R2: 0.95; 0.94)和空间(R2: 0.92; 0.72)温度变化,从而可以创建高分辨率地图。这些结果突出了整合地球观测和机器学习以生成高分辨率温度图的潜力,为城市规划、气候适应和热相关健康影响的流行病学研究提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Model Integrating Remote Sensing, Ground Station, and Geospatial Data to Predict Fine-Resolution Daily Air Temperature for Tuscany, Italy.

Heat-related morbidity and mortality are increasing due to climate change, emphasizing the need to identify vulnerable areas and people exposed to extreme temperatures. To improve heat stress impact assessment, we developed a replicable machine learning model that integrates remote sensing, ground station, and geospatial data to estimate daily air temperature at a spatial resolution of 100 m × 100 m across the region of Tuscany, Italy. Using a two-stage approach, we first imputed missing land surface temperature data from MODIS using gradient-boosted trees and spatio-temporal predictors. Then, we modeled daily maximum and minimum air temperatures by incorporating monitoring station observations, satellite-derived data (MODIS, Landsat 8), topography, land cover, meteorological variables (ERA5-land), and vegetation indices (NDVI). The model achieved high predictive accuracy, with R2 values of 0.95 for Tmax and 0.92 for Tmin, and root mean square errors (RMSE) of 1.95 °C and 1.96 °C, respectively. It effectively captured both temporal (R2: 0.95; 0.94) and spatial (R2: 0.92; 0.72) temperature variations, allowing for the creation of high-resolution maps. These results highlight the potential of integrating Earth Observation and machine learning to generate high-resolution temperature maps, offering valuable insights for urban planning, climate adaptation, and epidemiological studies on heat-related health effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信