苋菜MCPA抗性机制的测定。

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Plant Direct Pub Date : 2025-09-11 eCollection Date: 2025-09-01 DOI:10.1002/pld3.70105
Isabelle Aicklen, Mithila Jugulam, Todd Gaines, William Kramer, Martin Laforest, Darren Robinson, Peter Sikkema, François Tardif
{"title":"苋菜MCPA抗性机制的测定。","authors":"Isabelle Aicklen, Mithila Jugulam, Todd Gaines, William Kramer, Martin Laforest, Darren Robinson, Peter Sikkema, François Tardif","doi":"10.1002/pld3.70105","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to 2-methyl-4-chloro-phenoxyacetic acid (MCPA) was recently confirmed in a population of green pigweed (<i>Amaranthus powellii</i>) from Dresden, Ontario, Canada, with a resistance factor of 4.4. Resistance to synthetic auxin herbicides in <i>Amaranthus</i> species has previously been linked to non-target site resistance mechanisms with low-level resistance factors (< 10). Based on this information, an investigation into the mechanism of resistance to MCPA was conducted in this population of green pigweed. No significant differences in absorption, translocation, and metabolism of <sup>14</sup>C-MCPA existed between the resistant and a susceptible population of green pigweed. An RNA-Sequencing experiment to identify differentially expressed genes also confirmed this result. Genes that were differentially expressed in the resistant population were linked to target site modifications. A single nucleotide polymorphism (SNP) conferring a leucine to phenylalanine substitution was identified in auxin response factor (ARF) 9. This mutation may be in the Phox and Bem1p (PB1) domain in ARF9, which facilitates the interaction between ARFs and Aux/IAA repressor proteins. The results demonstrate that the mechanism of resistance to MCPA is not a non-target site mechanism and may be linked to a target site modification. Specifically, a SNP in ARF9 could disrupt the interaction between ARF9 and other Aux/IAAs, which could prevent ubiquitination of Aux/IAAs and subsequent lethal action of MCPA.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 9","pages":"e70105"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Determination of the Mechanisms of MCPA Resistance in <i>Amaranthus powellii</i>.\",\"authors\":\"Isabelle Aicklen, Mithila Jugulam, Todd Gaines, William Kramer, Martin Laforest, Darren Robinson, Peter Sikkema, François Tardif\",\"doi\":\"10.1002/pld3.70105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resistance to 2-methyl-4-chloro-phenoxyacetic acid (MCPA) was recently confirmed in a population of green pigweed (<i>Amaranthus powellii</i>) from Dresden, Ontario, Canada, with a resistance factor of 4.4. Resistance to synthetic auxin herbicides in <i>Amaranthus</i> species has previously been linked to non-target site resistance mechanisms with low-level resistance factors (< 10). Based on this information, an investigation into the mechanism of resistance to MCPA was conducted in this population of green pigweed. No significant differences in absorption, translocation, and metabolism of <sup>14</sup>C-MCPA existed between the resistant and a susceptible population of green pigweed. An RNA-Sequencing experiment to identify differentially expressed genes also confirmed this result. Genes that were differentially expressed in the resistant population were linked to target site modifications. A single nucleotide polymorphism (SNP) conferring a leucine to phenylalanine substitution was identified in auxin response factor (ARF) 9. This mutation may be in the Phox and Bem1p (PB1) domain in ARF9, which facilitates the interaction between ARFs and Aux/IAA repressor proteins. The results demonstrate that the mechanism of resistance to MCPA is not a non-target site mechanism and may be linked to a target site modification. Specifically, a SNP in ARF9 could disrupt the interaction between ARF9 and other Aux/IAAs, which could prevent ubiquitination of Aux/IAAs and subsequent lethal action of MCPA.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"9 9\",\"pages\":\"e70105\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.70105\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70105","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

来自加拿大安大略省德累斯顿的绿色藜草(Amaranthus powellii)对2-甲基-4-氯-苯氧乙酸(MCPA)具有抗性,其抗性因子为4.4。苋属植物对合成生长素类除草剂的抗性先前与低水平抗性因子(14C-MCPA)存在于抗性和易感群体之间的非靶点抗性机制有关。一项鉴定差异表达基因的rna测序实验也证实了这一结果。在耐药群体中差异表达的基因与靶位点修饰有关。在生长素反应因子(ARF)中发现了一个亮氨酸取代苯丙氨酸的单核苷酸多态性(SNP)。该突变可能位于ARF9的Phox和Bem1p (PB1)结构域,促进了arf与Aux/IAA抑制蛋白之间的相互作用。结果表明,MCPA的耐药机制不是非靶位机制,可能与靶位修饰有关。具体来说,ARF9中的SNP可能会破坏ARF9与其他Aux/IAAs之间的相互作用,从而阻止Aux/IAAs的泛素化和随后的MCPA致死作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determination of the Mechanisms of MCPA Resistance in <i>Amaranthus powellii</i>.

Determination of the Mechanisms of MCPA Resistance in <i>Amaranthus powellii</i>.

Determination of the Mechanisms of MCPA Resistance in <i>Amaranthus powellii</i>.

Determination of the Mechanisms of MCPA Resistance in Amaranthus powellii.

Resistance to 2-methyl-4-chloro-phenoxyacetic acid (MCPA) was recently confirmed in a population of green pigweed (Amaranthus powellii) from Dresden, Ontario, Canada, with a resistance factor of 4.4. Resistance to synthetic auxin herbicides in Amaranthus species has previously been linked to non-target site resistance mechanisms with low-level resistance factors (< 10). Based on this information, an investigation into the mechanism of resistance to MCPA was conducted in this population of green pigweed. No significant differences in absorption, translocation, and metabolism of 14C-MCPA existed between the resistant and a susceptible population of green pigweed. An RNA-Sequencing experiment to identify differentially expressed genes also confirmed this result. Genes that were differentially expressed in the resistant population were linked to target site modifications. A single nucleotide polymorphism (SNP) conferring a leucine to phenylalanine substitution was identified in auxin response factor (ARF) 9. This mutation may be in the Phox and Bem1p (PB1) domain in ARF9, which facilitates the interaction between ARFs and Aux/IAA repressor proteins. The results demonstrate that the mechanism of resistance to MCPA is not a non-target site mechanism and may be linked to a target site modification. Specifically, a SNP in ARF9 could disrupt the interaction between ARF9 and other Aux/IAAs, which could prevent ubiquitination of Aux/IAAs and subsequent lethal action of MCPA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信