通过条形码集成和研究电子数据捕获加强临床数据管理:可扩展和可适应的实施研究。

IF 2 Q3 HEALTH CARE SCIENCES & SERVICES
Rendong Zhang, Sophie Chiron, Regina Tyree, Kate Carson, Larry Raber, Karthik Ramadass, Chenyu Gao, Michael E Kim, Lianrui Zuo, Yike Li, Zhiyu Wan, Paul A Harris, Qi Liu, Ken S Lau, Lori A Coburn, Keith T Wilson, Yuankai Huo, Bennett A Landman, Shunxing Bao
{"title":"通过条形码集成和研究电子数据捕获加强临床数据管理:可扩展和可适应的实施研究。","authors":"Rendong Zhang, Sophie Chiron, Regina Tyree, Kate Carson, Larry Raber, Karthik Ramadass, Chenyu Gao, Michael E Kim, Lianrui Zuo, Yike Li, Zhiyu Wan, Paul A Harris, Qi Liu, Ken S Lau, Lori A Coburn, Keith T Wilson, Yuankai Huo, Bennett A Landman, Shunxing Bao","doi":"10.2196/70016","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Effective data management is crucial in clinical studies for precise tracking, secure storage, and reliable analysis of samples. Traditional systems often encounter challenges like barcode recognition errors, inadequate data details, and diminished performance under heavy workloads.</p><p><strong>Objective: </strong>This paper aims to enhance clinical data management by improving barcode robustness, increasing data granularity, and boosting system throughput. These improvements address key challenges in barcode informatics systems, as highlighted in previous studies, to better support real clinical applications. In addition, we aim to validate the design criteria on various gastrointestinal-related studies, ensuring it can be easily integrated into other clinical data management workflows.</p><p><strong>Methods: </strong>We evaluated the robustness of various barcode technologies under significant blurring conditions, implemented a dynamic organ-specific archive in the REDCap (Research Electronic Data Capture) database for various clinical study data collection criteria, and used Docker to containerize the informatics software for different studies. In addition, we proposed a local cache system to reduce interaction times with REDCap for large-scale data records. Experimental setups include assessing barcode recognition accuracy under various levels of image blurring, showcasing different study types managed with the organ-specific archive, and measuring system throughput and response times with and without the proposed local cache system.</p><p><strong>Results: </strong>Our findings demonstrate that the DataMatrix barcode exhibits superior resilience, maintaining high recognition accuracy under blurred conditions. The dynamic organ-specific archive in REDCap enabled precise tracking of sample origins, improving data granularity. Docker containerization streamlines software deployment and ensures consistency across studies. The local cache system significantly reduces interaction times with REDCap, decreasing operating time by nearly eightfold compared to the naïve strategy when handling large patient datasets.</p><p><strong>Conclusions: </strong>The proposed enhancements significantly improve barcode robustness, data granularity, and system throughput in the informatics system, addressing key limitations identified in previous studies. These optimizations ensure efficient data management and robust support for diverse clinical research needs.</p>","PeriodicalId":14841,"journal":{"name":"JMIR Formative Research","volume":"9 ","pages":"e70016"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12434633/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Clinical Data Management Through Barcode Integration and Research Electronic Data Capture: Scalable and Adaptable Implementation Study.\",\"authors\":\"Rendong Zhang, Sophie Chiron, Regina Tyree, Kate Carson, Larry Raber, Karthik Ramadass, Chenyu Gao, Michael E Kim, Lianrui Zuo, Yike Li, Zhiyu Wan, Paul A Harris, Qi Liu, Ken S Lau, Lori A Coburn, Keith T Wilson, Yuankai Huo, Bennett A Landman, Shunxing Bao\",\"doi\":\"10.2196/70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Effective data management is crucial in clinical studies for precise tracking, secure storage, and reliable analysis of samples. Traditional systems often encounter challenges like barcode recognition errors, inadequate data details, and diminished performance under heavy workloads.</p><p><strong>Objective: </strong>This paper aims to enhance clinical data management by improving barcode robustness, increasing data granularity, and boosting system throughput. These improvements address key challenges in barcode informatics systems, as highlighted in previous studies, to better support real clinical applications. In addition, we aim to validate the design criteria on various gastrointestinal-related studies, ensuring it can be easily integrated into other clinical data management workflows.</p><p><strong>Methods: </strong>We evaluated the robustness of various barcode technologies under significant blurring conditions, implemented a dynamic organ-specific archive in the REDCap (Research Electronic Data Capture) database for various clinical study data collection criteria, and used Docker to containerize the informatics software for different studies. In addition, we proposed a local cache system to reduce interaction times with REDCap for large-scale data records. Experimental setups include assessing barcode recognition accuracy under various levels of image blurring, showcasing different study types managed with the organ-specific archive, and measuring system throughput and response times with and without the proposed local cache system.</p><p><strong>Results: </strong>Our findings demonstrate that the DataMatrix barcode exhibits superior resilience, maintaining high recognition accuracy under blurred conditions. The dynamic organ-specific archive in REDCap enabled precise tracking of sample origins, improving data granularity. Docker containerization streamlines software deployment and ensures consistency across studies. The local cache system significantly reduces interaction times with REDCap, decreasing operating time by nearly eightfold compared to the naïve strategy when handling large patient datasets.</p><p><strong>Conclusions: </strong>The proposed enhancements significantly improve barcode robustness, data granularity, and system throughput in the informatics system, addressing key limitations identified in previous studies. These optimizations ensure efficient data management and robust support for diverse clinical research needs.</p>\",\"PeriodicalId\":14841,\"journal\":{\"name\":\"JMIR Formative Research\",\"volume\":\"9 \",\"pages\":\"e70016\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12434633/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Formative Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/70016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Formative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/70016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:在临床研究中,有效的数据管理对于样本的精确跟踪、安全存储和可靠分析至关重要。传统系统经常遇到条形码识别错误、数据细节不足以及在繁重工作负载下性能下降等挑战。目的:通过提高条码鲁棒性、增加数据粒度和提高系统吞吐量来加强临床数据管理。这些改进解决了条形码信息学系统的关键挑战,如先前研究中所强调的,以更好地支持实际临床应用。此外,我们的目标是验证各种胃肠道相关研究的设计标准,确保其可以轻松整合到其他临床数据管理工作流程中。方法:我们评估了各种条形码技术在显著模糊条件下的稳健性,在REDCap(研究电子数据捕获)数据库中实现了一个动态的器官特异性档案,用于各种临床研究数据收集标准,并使用Docker对不同研究的信息学软件进行容器化。此外,我们提出了一个本地缓存系统,以减少与REDCap的大规模数据记录交互次数。实验设置包括评估不同级别图像模糊下的条形码识别准确性,展示使用特定器官存档管理的不同研究类型,以及测量使用和不使用拟议的本地缓存系统的系统吞吐量和响应时间。结果:我们的研究结果表明,DataMatrix条形码具有优越的弹性,在模糊条件下保持较高的识别精度。REDCap中的动态器官特定档案可以精确跟踪样本来源,提高数据粒度。Docker容器化简化了软件部署,并确保了跨研究的一致性。本地缓存系统显著减少了与REDCap的交互时间,在处理大型患者数据集时,与naïve策略相比,操作时间减少了近8倍。结论:提出的增强功能显著提高了信息学系统中的条形码稳健性、数据粒度和系统吞吐量,解决了先前研究中确定的关键限制。这些优化确保了有效的数据管理和对不同临床研究需求的强大支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Clinical Data Management Through Barcode Integration and Research Electronic Data Capture: Scalable and Adaptable Implementation Study.

Enhancing Clinical Data Management Through Barcode Integration and Research Electronic Data Capture: Scalable and Adaptable Implementation Study.

Enhancing Clinical Data Management Through Barcode Integration and Research Electronic Data Capture: Scalable and Adaptable Implementation Study.

Enhancing Clinical Data Management Through Barcode Integration and Research Electronic Data Capture: Scalable and Adaptable Implementation Study.

Background: Effective data management is crucial in clinical studies for precise tracking, secure storage, and reliable analysis of samples. Traditional systems often encounter challenges like barcode recognition errors, inadequate data details, and diminished performance under heavy workloads.

Objective: This paper aims to enhance clinical data management by improving barcode robustness, increasing data granularity, and boosting system throughput. These improvements address key challenges in barcode informatics systems, as highlighted in previous studies, to better support real clinical applications. In addition, we aim to validate the design criteria on various gastrointestinal-related studies, ensuring it can be easily integrated into other clinical data management workflows.

Methods: We evaluated the robustness of various barcode technologies under significant blurring conditions, implemented a dynamic organ-specific archive in the REDCap (Research Electronic Data Capture) database for various clinical study data collection criteria, and used Docker to containerize the informatics software for different studies. In addition, we proposed a local cache system to reduce interaction times with REDCap for large-scale data records. Experimental setups include assessing barcode recognition accuracy under various levels of image blurring, showcasing different study types managed with the organ-specific archive, and measuring system throughput and response times with and without the proposed local cache system.

Results: Our findings demonstrate that the DataMatrix barcode exhibits superior resilience, maintaining high recognition accuracy under blurred conditions. The dynamic organ-specific archive in REDCap enabled precise tracking of sample origins, improving data granularity. Docker containerization streamlines software deployment and ensures consistency across studies. The local cache system significantly reduces interaction times with REDCap, decreasing operating time by nearly eightfold compared to the naïve strategy when handling large patient datasets.

Conclusions: The proposed enhancements significantly improve barcode robustness, data granularity, and system throughput in the informatics system, addressing key limitations identified in previous studies. These optimizations ensure efficient data management and robust support for diverse clinical research needs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JMIR Formative Research
JMIR Formative Research Medicine-Medicine (miscellaneous)
CiteScore
2.70
自引率
9.10%
发文量
579
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信