基于深度学习的荧光成像在临床前模型中用于口腔癌边缘分类。

IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-12-01 Epub Date: 2025-09-12 DOI:10.1117/1.JBO.30.S3.S34109
Hikaru Kurosawa, Natalie J Won, Jack B Wunder, Sujit Patil, Mandolin Bartling, Esmat Najjar, Sharon Tzelnick, Brian C Wilson, Jonathan C Irish, Michael J Daly
{"title":"基于深度学习的荧光成像在临床前模型中用于口腔癌边缘分类。","authors":"Hikaru Kurosawa, Natalie J Won, Jack B Wunder, Sujit Patil, Mandolin Bartling, Esmat Najjar, Sharon Tzelnick, Brian C Wilson, Jonathan C Irish, Michael J Daly","doi":"10.1117/1.JBO.30.S3.S34109","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Oral cancer surgery demands precise margin delineation to ensure complete tumor resection (healthy tissue margin <math><mrow><mo>></mo> <mn>5</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> ) while preserving postoperative functionality. Inadequate margins most frequently occur at the deep surgical margins, where tumors are located beneath the tissue surface; however, current fluorescent optical imaging systems are limited by their inability to quantify subsurface structures. Combining structured light techniques with deep learning may enable intraoperative margin assessment of 3D surgical specimens.</p><p><strong>Aim: </strong>A deep learning (DL)-enabled spatial frequency domain imaging (SFDI) system is investigated to provide subsurface depth quantification of fluorescent inclusions.</p><p><strong>Approach: </strong>A diffusion theory-based numerical simulation of SFDI was used to generate synthetic images for DL training. ResNet and U-Net convolutional neural networks were developed to predict margin distance (subsurface depth) and fluorophore concentration from fluorescence images and optical property maps. Validation was conducted using <i>in silico</i> SFDI images of composite spherical harmonics, as well as simulated and phantom datasets of patient-derived tongue tumor shapes. Further testing was done in <i>ex vivo</i> animal tissue with fluorescent inclusions.</p><p><strong>Results: </strong>For oral cancer optical properties, the U-Net DL model predicted the overall depth, concentration, and closest depth with errors of <math><mrow><mn>1.43</mn> <mo>±</mo> <mn>1.84</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> , <math><mrow><mn>2.26</mn> <mo>±</mo> <mn>1.63</mn> <mtext>  </mtext> <mi>μ</mi> <mi>g</mi> <mo>/</mo> <mi>ml</mi></mrow> </math> , and <math><mrow><mn>0.33</mn> <mo>±</mo> <mn>0.31</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> , respectively, using <i>in silico</i> patient-derived tongue shapes with closest depths below 10 mm. In PpIX fluorescent phantoms of inclusion depths up to 8 mm, the closest subsurface depth was predicted with an error of <math><mrow><mn>0.57</mn> <mo>±</mo> <mn>0.38</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> . For <i>ex vivo</i> tissue, the closest distance to the fluorescent inclusions with depths up to 6 mm was predicted with an error of <math><mrow><mn>0.59</mn> <mo>±</mo> <mn>0.53</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> .</p><p><strong>Conclusions: </strong>A DL-enabled SFDI system trained with <i>in silico</i> images demonstrates promise in providing margin assessment of oral cancer tumors.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 Suppl 3","pages":"S34109"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12431673/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-enabled fluorescence imaging for oral cancer margin classification in preclinical models.\",\"authors\":\"Hikaru Kurosawa, Natalie J Won, Jack B Wunder, Sujit Patil, Mandolin Bartling, Esmat Najjar, Sharon Tzelnick, Brian C Wilson, Jonathan C Irish, Michael J Daly\",\"doi\":\"10.1117/1.JBO.30.S3.S34109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Oral cancer surgery demands precise margin delineation to ensure complete tumor resection (healthy tissue margin <math><mrow><mo>></mo> <mn>5</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> ) while preserving postoperative functionality. Inadequate margins most frequently occur at the deep surgical margins, where tumors are located beneath the tissue surface; however, current fluorescent optical imaging systems are limited by their inability to quantify subsurface structures. Combining structured light techniques with deep learning may enable intraoperative margin assessment of 3D surgical specimens.</p><p><strong>Aim: </strong>A deep learning (DL)-enabled spatial frequency domain imaging (SFDI) system is investigated to provide subsurface depth quantification of fluorescent inclusions.</p><p><strong>Approach: </strong>A diffusion theory-based numerical simulation of SFDI was used to generate synthetic images for DL training. ResNet and U-Net convolutional neural networks were developed to predict margin distance (subsurface depth) and fluorophore concentration from fluorescence images and optical property maps. Validation was conducted using <i>in silico</i> SFDI images of composite spherical harmonics, as well as simulated and phantom datasets of patient-derived tongue tumor shapes. Further testing was done in <i>ex vivo</i> animal tissue with fluorescent inclusions.</p><p><strong>Results: </strong>For oral cancer optical properties, the U-Net DL model predicted the overall depth, concentration, and closest depth with errors of <math><mrow><mn>1.43</mn> <mo>±</mo> <mn>1.84</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> , <math><mrow><mn>2.26</mn> <mo>±</mo> <mn>1.63</mn> <mtext>  </mtext> <mi>μ</mi> <mi>g</mi> <mo>/</mo> <mi>ml</mi></mrow> </math> , and <math><mrow><mn>0.33</mn> <mo>±</mo> <mn>0.31</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> , respectively, using <i>in silico</i> patient-derived tongue shapes with closest depths below 10 mm. In PpIX fluorescent phantoms of inclusion depths up to 8 mm, the closest subsurface depth was predicted with an error of <math><mrow><mn>0.57</mn> <mo>±</mo> <mn>0.38</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> . For <i>ex vivo</i> tissue, the closest distance to the fluorescent inclusions with depths up to 6 mm was predicted with an error of <math><mrow><mn>0.59</mn> <mo>±</mo> <mn>0.53</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> .</p><p><strong>Conclusions: </strong>A DL-enabled SFDI system trained with <i>in silico</i> images demonstrates promise in providing margin assessment of oral cancer tumors.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 Suppl 3\",\"pages\":\"S34109\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12431673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.S3.S34109\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.S3.S34109","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:口腔癌手术需要精确的边缘划定,以确保肿瘤完全切除(健康组织边缘bbb50mm),同时保留术后功能。边缘不足最常发生在深部手术边缘,肿瘤位于组织表面以下;然而,目前的荧光光学成像系统由于无法量化地下结构而受到限制。将结构光技术与深度学习相结合,可以实现对3D手术标本的术中边缘评估。目的:研究一种基于深度学习(DL)的空间频域成像(SFDI)系统,以提供荧光内含物的地下深度定量。方法:利用扩散理论对SFDI进行数值模拟,生成用于深度学习训练的合成图像。开发了ResNet和U-Net卷积神经网络,从荧光图像和光学性质图中预测边缘距离(地下深度)和荧光团浓度。使用硅合成球面谐波的SFDI图像以及患者衍生舌肿瘤形状的模拟和模拟数据集进行验证。进一步的测试是在荧光内含物的离体动物组织中进行的。结果:对于口腔癌的光学特性,U-Net DL模型预测的总体深度、浓度和最接近深度的误差分别为1.43±1.84 mm、2.26±1.63 μ g / ml和0.33±0.31 mm,使用的是硅片患者来源的舌形,最接近深度小于10 mm。在包裹体深度达8 mm的PpIX荧光幻影中,预测的最接近的亚表面深度误差为0.57±0.38 mm。对于离体组织,预测到深度达6 mm的荧光内含物的最近距离,误差为0.59±0.53 mm。结论:用计算机图像训练的基于dl的SFDI系统有望提供口腔癌肿瘤的边缘评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-enabled fluorescence imaging for oral cancer margin classification in preclinical models.

Significance: Oral cancer surgery demands precise margin delineation to ensure complete tumor resection (healthy tissue margin > 5    mm ) while preserving postoperative functionality. Inadequate margins most frequently occur at the deep surgical margins, where tumors are located beneath the tissue surface; however, current fluorescent optical imaging systems are limited by their inability to quantify subsurface structures. Combining structured light techniques with deep learning may enable intraoperative margin assessment of 3D surgical specimens.

Aim: A deep learning (DL)-enabled spatial frequency domain imaging (SFDI) system is investigated to provide subsurface depth quantification of fluorescent inclusions.

Approach: A diffusion theory-based numerical simulation of SFDI was used to generate synthetic images for DL training. ResNet and U-Net convolutional neural networks were developed to predict margin distance (subsurface depth) and fluorophore concentration from fluorescence images and optical property maps. Validation was conducted using in silico SFDI images of composite spherical harmonics, as well as simulated and phantom datasets of patient-derived tongue tumor shapes. Further testing was done in ex vivo animal tissue with fluorescent inclusions.

Results: For oral cancer optical properties, the U-Net DL model predicted the overall depth, concentration, and closest depth with errors of 1.43 ± 1.84    mm , 2.26 ± 1.63    μ g / ml , and 0.33 ± 0.31    mm , respectively, using in silico patient-derived tongue shapes with closest depths below 10 mm. In PpIX fluorescent phantoms of inclusion depths up to 8 mm, the closest subsurface depth was predicted with an error of 0.57 ± 0.38    mm . For ex vivo tissue, the closest distance to the fluorescent inclusions with depths up to 6 mm was predicted with an error of 0.59 ± 0.53    mm .

Conclusions: A DL-enabled SFDI system trained with in silico images demonstrates promise in providing margin assessment of oral cancer tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信