Lei Wang, Yujia Xu, Xiang Zhong, Guiping Wang, Zijun Shi, Can Mei, Linwanyue Chen, Jianbo Zhan, Jing Cheng
{"title":"外泌体lncrna在慢性疲劳综合征中的新作用:从细胞间通讯到疾病生物标志物。","authors":"Lei Wang, Yujia Xu, Xiang Zhong, Guiping Wang, Zijun Shi, Can Mei, Linwanyue Chen, Jianbo Zhan, Jing Cheng","doi":"10.3389/fmolb.2025.1653627","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic fatigue syndrome (CFS) is a complex disease involving multiple systems throughout the body with unknown pathogenesis and is characterized by chronic fatigue. To date, no effective treatment for CFS has been found, as well as biomarkers for early identification of diagnosis. However, exosomes, a subpopulation of extracellular vesicles (EVs), are membranous vesicles secreted by cells into the surrounding environment, and long noncoding RNAs (LncRNAs) in EVs can mediate inter-organ and inter-cellular communication, which maybe associate with CFS. Therefore, this study aims to review the association between EV-LncRNAs and CFS, and to explore whether LncRNAs can be used as potential biomarkers for early identification and diagnosis of CFS, which put forward new ideas and a theoretical basis for the pathogenesis of CFS, as well as the identification of novel targeted therapies.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1653627"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425791/pdf/","citationCount":"0","resultStr":"{\"title\":\"The emerging role of exosomal LncRNAs in chronic fatigue syndrome: from intercellular communication to disease biomarkers.\",\"authors\":\"Lei Wang, Yujia Xu, Xiang Zhong, Guiping Wang, Zijun Shi, Can Mei, Linwanyue Chen, Jianbo Zhan, Jing Cheng\",\"doi\":\"10.3389/fmolb.2025.1653627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic fatigue syndrome (CFS) is a complex disease involving multiple systems throughout the body with unknown pathogenesis and is characterized by chronic fatigue. To date, no effective treatment for CFS has been found, as well as biomarkers for early identification of diagnosis. However, exosomes, a subpopulation of extracellular vesicles (EVs), are membranous vesicles secreted by cells into the surrounding environment, and long noncoding RNAs (LncRNAs) in EVs can mediate inter-organ and inter-cellular communication, which maybe associate with CFS. Therefore, this study aims to review the association between EV-LncRNAs and CFS, and to explore whether LncRNAs can be used as potential biomarkers for early identification and diagnosis of CFS, which put forward new ideas and a theoretical basis for the pathogenesis of CFS, as well as the identification of novel targeted therapies.</p>\",\"PeriodicalId\":12465,\"journal\":{\"name\":\"Frontiers in Molecular Biosciences\",\"volume\":\"12 \",\"pages\":\"1653627\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425791/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmolb.2025.1653627\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1653627","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The emerging role of exosomal LncRNAs in chronic fatigue syndrome: from intercellular communication to disease biomarkers.
Chronic fatigue syndrome (CFS) is a complex disease involving multiple systems throughout the body with unknown pathogenesis and is characterized by chronic fatigue. To date, no effective treatment for CFS has been found, as well as biomarkers for early identification of diagnosis. However, exosomes, a subpopulation of extracellular vesicles (EVs), are membranous vesicles secreted by cells into the surrounding environment, and long noncoding RNAs (LncRNAs) in EVs can mediate inter-organ and inter-cellular communication, which maybe associate with CFS. Therefore, this study aims to review the association between EV-LncRNAs and CFS, and to explore whether LncRNAs can be used as potential biomarkers for early identification and diagnosis of CFS, which put forward new ideas and a theoretical basis for the pathogenesis of CFS, as well as the identification of novel targeted therapies.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.