使用验证数据中的测量误差参数。

IF 4.4 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Rachael K Ross, Matthew P Fox, Catherine R Lesko, Jacqueline E Rudolph, Lauren C Zalla, Jessie K Edwards
{"title":"使用验证数据中的测量误差参数。","authors":"Rachael K Ross, Matthew P Fox, Catherine R Lesko, Jacqueline E Rudolph, Lauren C Zalla, Jessie K Edwards","doi":"10.1097/EDE.0000000000001917","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement error is ubiquitous in the data used for epidemiologic research and can lead to meaningful information bias. Analytic approaches to address measurement error and quantitative bias analyses examining the potential impact of measurement error on study results often leverage validation data that provides information about the relationship between the true measure and the available imperfect measure, quantified by measurement error parameters such as sensitivity and specificity in the binary case. Leveraging validation data often requires transporting these measurement error parameters from the validation data to the target sample of interest (that may or may not include individuals from the validation data). In this paper we examine the independence assumptions required to transport measurement error parameters from the validation data to the target sample, highlighting how the required assumption differs depending on the form of the measurement error parameters (i.e., whether it is the true measure conditional on the imperfect measure or vice versa). We then illustrate how diagrams can clarify the conditions under which the required assumptions hold and thus what measurement error parameters can be validly transported. This work provides practical tools for epidemiologists to address measurement error using validation data in applied research.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using measurement error parameters from validation data.\",\"authors\":\"Rachael K Ross, Matthew P Fox, Catherine R Lesko, Jacqueline E Rudolph, Lauren C Zalla, Jessie K Edwards\",\"doi\":\"10.1097/EDE.0000000000001917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measurement error is ubiquitous in the data used for epidemiologic research and can lead to meaningful information bias. Analytic approaches to address measurement error and quantitative bias analyses examining the potential impact of measurement error on study results often leverage validation data that provides information about the relationship between the true measure and the available imperfect measure, quantified by measurement error parameters such as sensitivity and specificity in the binary case. Leveraging validation data often requires transporting these measurement error parameters from the validation data to the target sample of interest (that may or may not include individuals from the validation data). In this paper we examine the independence assumptions required to transport measurement error parameters from the validation data to the target sample, highlighting how the required assumption differs depending on the form of the measurement error parameters (i.e., whether it is the true measure conditional on the imperfect measure or vice versa). We then illustrate how diagrams can clarify the conditions under which the required assumptions hold and thus what measurement error parameters can be validly transported. This work provides practical tools for epidemiologists to address measurement error using validation data in applied research.</p>\",\"PeriodicalId\":11779,\"journal\":{\"name\":\"Epidemiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/EDE.0000000000001917\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001917","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

测量误差在用于流行病学研究的数据中普遍存在,并可能导致有意义的信息偏差。解决测量误差和定量偏倚分析的分析方法检查测量误差对研究结果的潜在影响,通常利用验证数据,提供有关真实测量和可用不完美测量之间关系的信息,通过测量误差参数(如二元情况下的灵敏度和特异性)量化。利用验证数据通常需要将这些测量误差参数从验证数据传输到感兴趣的目标样本(可能包括也可能不包括验证数据中的个体)。在本文中,我们研究了将测量误差参数从验证数据传输到目标样本所需的独立性假设,强调了所需假设如何根据测量误差参数的形式而变化(即,是否以不完全测量为条件的真实测量,反之亦然)。然后,我们说明图表如何能够阐明所需的假设所维持的条件,从而可以有效地传递哪些测量误差参数。这项工作为流行病学家在应用研究中使用验证数据解决测量误差提供了实用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using measurement error parameters from validation data.

Measurement error is ubiquitous in the data used for epidemiologic research and can lead to meaningful information bias. Analytic approaches to address measurement error and quantitative bias analyses examining the potential impact of measurement error on study results often leverage validation data that provides information about the relationship between the true measure and the available imperfect measure, quantified by measurement error parameters such as sensitivity and specificity in the binary case. Leveraging validation data often requires transporting these measurement error parameters from the validation data to the target sample of interest (that may or may not include individuals from the validation data). In this paper we examine the independence assumptions required to transport measurement error parameters from the validation data to the target sample, highlighting how the required assumption differs depending on the form of the measurement error parameters (i.e., whether it is the true measure conditional on the imperfect measure or vice versa). We then illustrate how diagrams can clarify the conditions under which the required assumptions hold and thus what measurement error parameters can be validly transported. This work provides practical tools for epidemiologists to address measurement error using validation data in applied research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信