{"title":"了解抗菌素耐药性:从机制到公共卫生影响。","authors":"Krishnendu Adhikary, Krishnendu Ganguly, Susmita Chakrabarty, Riya Sarkar, Riya Nag, Sanchita Srivastava, Saurav Barman, Pradipta Banerjee, Prithviraj Karak, Sumel Ashique, Md Sadique Hussain","doi":"10.2174/0113892010406135250828050228","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is a global public health crisis driven by the overuse and misuse of antibiotics, inadequate infection control practices, and the evolution of microbes. It compromises the effective treatment of infections, posing severe implications for morbidity, mortality, and healthcare costs. Pathogens such as extended-spectrum β-lactamase (ESBL)- producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) exemplify the growing threat of drug-resistant organisms. This review provides an in-depth analysis of the mechanisms underlying AMR, including enzymatic drug inactivation, efflux pump overexpression, target site modification, and biofilm formation. Additionally, it examines the clinical and economic implications of AMR and assesses emerging strategies for mitigation. Innovative solutions, such as bacteriophage therapy, CRISPR-based genome editing, and the One Health approach, offer promising avenues to address resistance across the human, animal, and environmental health sectors. Coordinated global efforts in surveillance, stewardship, and research are essential to curbing the spread and impact of AMR.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Antimicrobial Resistance: From Mechanisms to Public Health Implications.\",\"authors\":\"Krishnendu Adhikary, Krishnendu Ganguly, Susmita Chakrabarty, Riya Sarkar, Riya Nag, Sanchita Srivastava, Saurav Barman, Pradipta Banerjee, Prithviraj Karak, Sumel Ashique, Md Sadique Hussain\",\"doi\":\"10.2174/0113892010406135250828050228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance (AMR) is a global public health crisis driven by the overuse and misuse of antibiotics, inadequate infection control practices, and the evolution of microbes. It compromises the effective treatment of infections, posing severe implications for morbidity, mortality, and healthcare costs. Pathogens such as extended-spectrum β-lactamase (ESBL)- producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) exemplify the growing threat of drug-resistant organisms. This review provides an in-depth analysis of the mechanisms underlying AMR, including enzymatic drug inactivation, efflux pump overexpression, target site modification, and biofilm formation. Additionally, it examines the clinical and economic implications of AMR and assesses emerging strategies for mitigation. Innovative solutions, such as bacteriophage therapy, CRISPR-based genome editing, and the One Health approach, offer promising avenues to address resistance across the human, animal, and environmental health sectors. Coordinated global efforts in surveillance, stewardship, and research are essential to curbing the spread and impact of AMR.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010406135250828050228\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010406135250828050228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Understanding Antimicrobial Resistance: From Mechanisms to Public Health Implications.
Antimicrobial resistance (AMR) is a global public health crisis driven by the overuse and misuse of antibiotics, inadequate infection control practices, and the evolution of microbes. It compromises the effective treatment of infections, posing severe implications for morbidity, mortality, and healthcare costs. Pathogens such as extended-spectrum β-lactamase (ESBL)- producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) exemplify the growing threat of drug-resistant organisms. This review provides an in-depth analysis of the mechanisms underlying AMR, including enzymatic drug inactivation, efflux pump overexpression, target site modification, and biofilm formation. Additionally, it examines the clinical and economic implications of AMR and assesses emerging strategies for mitigation. Innovative solutions, such as bacteriophage therapy, CRISPR-based genome editing, and the One Health approach, offer promising avenues to address resistance across the human, animal, and environmental health sectors. Coordinated global efforts in surveillance, stewardship, and research are essential to curbing the spread and impact of AMR.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.