组织病理学图像分析和提高口腔癌检测的诊断准确性。

IF 1.9 4区 医学 Q3 ONCOLOGY
V P Gladis Pushparathi, S R Sylaja Vallee Narayan, R S Pratheeba, V Naveen
{"title":"组织病理学图像分析和提高口腔癌检测的诊断准确性。","authors":"V P Gladis Pushparathi, S R Sylaja Vallee Narayan, R S Pratheeba, V Naveen","doi":"10.1080/07357907.2025.2559103","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning (DL) has transformed medical imaging, particularly in the realm of Oral Cancer (OC) diagnosis using histopathological images. Timely detection of OC is essential for enhancing precision medicine and saving lives. However, incorrect diagnosis may impede effective treatment. In this study, we have proposed a DL model for OC classification, enhanced diagnosis decision-making, and interpretability. We achieve this by starting with color normalization of histopathology images using the Vahadane Three-Stain Parameter Normalization and watershed segmentation method, followed by tiling and augmentation. Key features are selected using the Weighted Fisher Score (WFS) to address class imbalance. The U-Net classifier has been improved by using feature-based inputs instead of full images, reducing computational complexity and training time. The integration of Vahadane normalization for consistent preprocessing across samples, WFS, and Explainable Artificial Intelligence (XAI) addresses critical challenges in histopathological image analysis. The proposed model surpasses existing approaches with a classification accuracy of 99.54% and outperforms DenseNet201 and VGG10 in precision and reliability. The efficiency in handling imbalanced datasets and explainability features make it suitable for early precise OC detection, which can reduce diagnostic errors and enhance treatment outcomes.​.</p>","PeriodicalId":9463,"journal":{"name":"Cancer Investigation","volume":" ","pages":"1-14"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histopathological Image Analysis and Enhanced Diagnostic Accuracy Explainability for Oral Cancer Detection.\",\"authors\":\"V P Gladis Pushparathi, S R Sylaja Vallee Narayan, R S Pratheeba, V Naveen\",\"doi\":\"10.1080/07357907.2025.2559103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning (DL) has transformed medical imaging, particularly in the realm of Oral Cancer (OC) diagnosis using histopathological images. Timely detection of OC is essential for enhancing precision medicine and saving lives. However, incorrect diagnosis may impede effective treatment. In this study, we have proposed a DL model for OC classification, enhanced diagnosis decision-making, and interpretability. We achieve this by starting with color normalization of histopathology images using the Vahadane Three-Stain Parameter Normalization and watershed segmentation method, followed by tiling and augmentation. Key features are selected using the Weighted Fisher Score (WFS) to address class imbalance. The U-Net classifier has been improved by using feature-based inputs instead of full images, reducing computational complexity and training time. The integration of Vahadane normalization for consistent preprocessing across samples, WFS, and Explainable Artificial Intelligence (XAI) addresses critical challenges in histopathological image analysis. The proposed model surpasses existing approaches with a classification accuracy of 99.54% and outperforms DenseNet201 and VGG10 in precision and reliability. The efficiency in handling imbalanced datasets and explainability features make it suitable for early precise OC detection, which can reduce diagnostic errors and enhance treatment outcomes.​.</p>\",\"PeriodicalId\":9463,\"journal\":{\"name\":\"Cancer Investigation\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/07357907.2025.2559103\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07357907.2025.2559103","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)已经改变了医学成像,特别是在使用组织病理学图像进行口腔癌(OC)诊断的领域。及时发现卵巢癌对于提高精准医疗和挽救生命至关重要。然而,错误的诊断可能会阻碍有效的治疗。在这项研究中,我们提出了一个深度学习模型,用于OC分类,增强诊断决策和可解释性。我们通过使用Vahadane三染色参数归一化和分水岭分割方法对组织病理学图像进行颜色归一化,然后进行平铺和增强来实现这一点。使用加权费舍尔分数(WFS)选择关键特征来解决类别不平衡问题。通过使用基于特征的输入而不是完整的图像,U-Net分类器得到了改进,减少了计算复杂度和训练时间。整合Vahadane归一化以实现跨样本、WFS和可解释人工智能(XAI)的一致预处理,解决了组织病理学图像分析中的关键挑战。该模型的分类准确率达到99.54%,在精度和可靠性上优于DenseNet201和VGG10。处理不平衡数据集的效率和可解释性特点使其适合于早期精确的OC检测,从而减少诊断错误,提高治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Histopathological Image Analysis and Enhanced Diagnostic Accuracy Explainability for Oral Cancer Detection.

Deep learning (DL) has transformed medical imaging, particularly in the realm of Oral Cancer (OC) diagnosis using histopathological images. Timely detection of OC is essential for enhancing precision medicine and saving lives. However, incorrect diagnosis may impede effective treatment. In this study, we have proposed a DL model for OC classification, enhanced diagnosis decision-making, and interpretability. We achieve this by starting with color normalization of histopathology images using the Vahadane Three-Stain Parameter Normalization and watershed segmentation method, followed by tiling and augmentation. Key features are selected using the Weighted Fisher Score (WFS) to address class imbalance. The U-Net classifier has been improved by using feature-based inputs instead of full images, reducing computational complexity and training time. The integration of Vahadane normalization for consistent preprocessing across samples, WFS, and Explainable Artificial Intelligence (XAI) addresses critical challenges in histopathological image analysis. The proposed model surpasses existing approaches with a classification accuracy of 99.54% and outperforms DenseNet201 and VGG10 in precision and reliability. The efficiency in handling imbalanced datasets and explainability features make it suitable for early precise OC detection, which can reduce diagnostic errors and enhance treatment outcomes.​.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Investigation
Cancer Investigation 医学-肿瘤学
CiteScore
3.80
自引率
4.20%
发文量
71
审稿时长
8.5 months
期刊介绍: Cancer Investigation is one of the most highly regarded and recognized journals in the field of basic and clinical oncology. It is designed to give physicians a comprehensive resource on the current state of progress in the cancer field as well as a broad background of reliable information necessary for effective decision making. In addition to presenting original papers of fundamental significance, it also publishes reviews, essays, specialized presentations of controversies, considerations of new technologies and their applications to specific laboratory problems, discussions of public issues, miniseries on major topics, new and experimental drugs and therapies, and an innovative letters to the editor section. One of the unique features of the journal is its departmentalized editorial sections reporting on more than 30 subject categories covering the broad spectrum of specialized areas that together comprise the field of oncology. Edited by leading physicians and research scientists, these sections make Cancer Investigation the prime resource for clinicians seeking to make sense of the sometimes-overwhelming amount of information available throughout the field. In addition to its peer-reviewed clinical research, the journal also features translational studies that bridge the gap between the laboratory and the clinic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信