聚合物衍生和ni单原子掺杂碳纳米纤维用于CO2捕获和电还原成CO。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-15 DOI:10.1002/cssc.202500602
S Shilpa, Fanshu Yuan, Zhengyuan Li, Preeti Dahiya, Astrid Campos Mata, Ram Manohar Yadav, Guanhui Gao, Sung-Fu Hung, Salman A Khan, Jingjie Wu, Muhammad M Rahman, Soumyabrata Roy
{"title":"聚合物衍生和ni单原子掺杂碳纳米纤维用于CO2捕获和电还原成CO。","authors":"S Shilpa, Fanshu Yuan, Zhengyuan Li, Preeti Dahiya, Astrid Campos Mata, Ram Manohar Yadav, Guanhui Gao, Sung-Fu Hung, Salman A Khan, Jingjie Wu, Muhammad M Rahman, Soumyabrata Roy","doi":"10.1002/cssc.202500602","DOIUrl":null,"url":null,"abstract":"<p><p>Unique properties of carbon nanofibers (CNFs), such as high surface area, tunable porosity and heteroatom doping capability, make them archetypes for CO<sub>2</sub> capture and conversion applications. Single-atom catalysts (SACs) with metal-nitrogen-carbon motifs have been transformative in electrocatalytic CO<sub>2</sub> reduction (eCO<sub>2</sub>R), due to their high atomic utilization, undercoordinated active sites, and unique electronic structures. Herein, porous CNFs from three polymers, viz. Bacterial cellulose, Aramid, and Zylon, are optimally synthesized. The textural and porous architectures of the CNFs are exploited for ambient and high-pressure CO<sub>2</sub> capture, with Aramid-CNFs exhibiting the highest CO<sub>2</sub> adsorption capacity of ≈4 mmol g<sup>-1</sup> at 1 Bar, 273 K. Subsequently, the N-doped CNFs of carbonized bacterial cellulose (N-CBC) are explored for hosting Ni single atoms to yield Ni-N-CNF SACs. Extended x-ray absorption fine structure (EXAFS) analysis, microscopic studies and corroborative density functional theory (DFT) calculations confirmed the atomic dispersion of Ni sites on N-CBC matrix having Ni-N<sub>4</sub> coordination. Ni-N-CBC at a mere 0.1 wt% Ni loading exhibited competitive and durable eCO<sub>2</sub>R-to-CO performance with Faradaic efficiency (FE<sub>CO</sub>) of 94 ± 3% at -0.53 V versus reversible hydrogen electrode (RHE) and a high turnover frequency (TOF) of 35.26 s<sup>-1</sup>. This work underscores the properties and potential of CNFs for sustainable CO<sub>2</sub> capture and conversion.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500602"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer Derived and Ni-Single Atom Doped Carbon Nanofibers for CO<sub>2</sub> Capture and Electroreduction to CO.\",\"authors\":\"S Shilpa, Fanshu Yuan, Zhengyuan Li, Preeti Dahiya, Astrid Campos Mata, Ram Manohar Yadav, Guanhui Gao, Sung-Fu Hung, Salman A Khan, Jingjie Wu, Muhammad M Rahman, Soumyabrata Roy\",\"doi\":\"10.1002/cssc.202500602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unique properties of carbon nanofibers (CNFs), such as high surface area, tunable porosity and heteroatom doping capability, make them archetypes for CO<sub>2</sub> capture and conversion applications. Single-atom catalysts (SACs) with metal-nitrogen-carbon motifs have been transformative in electrocatalytic CO<sub>2</sub> reduction (eCO<sub>2</sub>R), due to their high atomic utilization, undercoordinated active sites, and unique electronic structures. Herein, porous CNFs from three polymers, viz. Bacterial cellulose, Aramid, and Zylon, are optimally synthesized. The textural and porous architectures of the CNFs are exploited for ambient and high-pressure CO<sub>2</sub> capture, with Aramid-CNFs exhibiting the highest CO<sub>2</sub> adsorption capacity of ≈4 mmol g<sup>-1</sup> at 1 Bar, 273 K. Subsequently, the N-doped CNFs of carbonized bacterial cellulose (N-CBC) are explored for hosting Ni single atoms to yield Ni-N-CNF SACs. Extended x-ray absorption fine structure (EXAFS) analysis, microscopic studies and corroborative density functional theory (DFT) calculations confirmed the atomic dispersion of Ni sites on N-CBC matrix having Ni-N<sub>4</sub> coordination. Ni-N-CBC at a mere 0.1 wt% Ni loading exhibited competitive and durable eCO<sub>2</sub>R-to-CO performance with Faradaic efficiency (FE<sub>CO</sub>) of 94 ± 3% at -0.53 V versus reversible hydrogen electrode (RHE) and a high turnover frequency (TOF) of 35.26 s<sup>-1</sup>. This work underscores the properties and potential of CNFs for sustainable CO<sub>2</sub> capture and conversion.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500602\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500602\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500602","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳纳米纤维(CNFs)的独特特性,如高表面积、可调孔隙率和杂原子掺杂能力,使其成为二氧化碳捕获和转化应用的原型。具有金属-氮-碳基序的单原子催化剂(SACs)由于其高原子利用率、低配位活性位点和独特的电子结构,在电催化CO2还原(eCO2R)中具有革命性的意义。在这里,多孔CNFs从三种聚合物,即细菌纤维素,芳纶,和Zylon,被最佳地合成。CNFs的结构和多孔结构被用于环境和高压CO2捕获,其中芳纶CNFs在1 Bar, 273 K下表现出最高的CO2吸附容量≈4 mmol g-1。随后,研究了碳化细菌纤维素(N-CBC)的n掺杂cnf,用于承载Ni单原子以制备Ni- n - cnf SACs。扩展x射线吸收精细结构(EXAFS)分析、微观研究和确证密度泛函理论(DFT)计算证实了Ni在具有Ni- n4配位的N-CBC基体上的原子分散。与可逆氢电极(RHE)相比,Ni- n - cbc在0.1 wt% Ni负载下表现出具有竞争力和持久的eCO2R-to-CO性能,在-0.53 V下的法拉第效率(FECO)为94±3%,周转频率(TOF)高达35.26 s-1。这项工作强调了CNFs在可持续二氧化碳捕获和转化方面的特性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polymer Derived and Ni-Single Atom Doped Carbon Nanofibers for CO2 Capture and Electroreduction to CO.

Unique properties of carbon nanofibers (CNFs), such as high surface area, tunable porosity and heteroatom doping capability, make them archetypes for CO2 capture and conversion applications. Single-atom catalysts (SACs) with metal-nitrogen-carbon motifs have been transformative in electrocatalytic CO2 reduction (eCO2R), due to their high atomic utilization, undercoordinated active sites, and unique electronic structures. Herein, porous CNFs from three polymers, viz. Bacterial cellulose, Aramid, and Zylon, are optimally synthesized. The textural and porous architectures of the CNFs are exploited for ambient and high-pressure CO2 capture, with Aramid-CNFs exhibiting the highest CO2 adsorption capacity of ≈4 mmol g-1 at 1 Bar, 273 K. Subsequently, the N-doped CNFs of carbonized bacterial cellulose (N-CBC) are explored for hosting Ni single atoms to yield Ni-N-CNF SACs. Extended x-ray absorption fine structure (EXAFS) analysis, microscopic studies and corroborative density functional theory (DFT) calculations confirmed the atomic dispersion of Ni sites on N-CBC matrix having Ni-N4 coordination. Ni-N-CBC at a mere 0.1 wt% Ni loading exhibited competitive and durable eCO2R-to-CO performance with Faradaic efficiency (FECO) of 94 ± 3% at -0.53 V versus reversible hydrogen electrode (RHE) and a high turnover frequency (TOF) of 35.26 s-1. This work underscores the properties and potential of CNFs for sustainable CO2 capture and conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信