{"title":"冠醚促进非手性分子螺旋自组装:辛氟联苯胺与18-冠-6共结晶的对称性破缺。","authors":"Tamara Vaganova, Yurij Gatilov, Enrico Benassi, Haiyan Fan, Denis Pishchur, Evgenij Malykhin","doi":"10.1002/cplu.202500481","DOIUrl":null,"url":null,"abstract":"<p><p>New H-bonded supramolecular assembliesare obtained using the polyfluorobiphenyl H-donor derivatives and 18-crown-6 ether. Cocrystals of octafluorobenzidine with 18-crown-6 of 1:1 stoichiometry belong to the enantiomorphous space groups P6<sub>5</sub> and P6<sub>1</sub>. The helical self-assembly of these achiral molecules is achieved due to the interplanar angle of the bis-aryl molecule (≈60°), which is fixed by directed N-H···O<sub>cr</sub> H-bonds between two H<sub>amino</sub> atoms with two O<sub>cr</sub> atoms at both ends of the molecule. Cocrystallization of octafluorobiphenol results in the formation of a crystalline hydrate based on the water-mediated H-bond Ar-O-H···O(H)-H···O<sub>cr</sub>. Flexible water linker eliminates the effect of the H-donor coformer structure and makes this cocrystal achiral. The hydrogen bonding details between octafluorobenzidine and 18-crown-6 within a unit cell are investigated through a combination of vibrational spectroscopy and quantum mechanical calculations. An oxygen atom in 18-crown-6 is identified as a chiral center, as a result of intermolecular interactions involving this atom and hydrogen atoms bonded to its α and β carbon atoms. The unique interaction patterns of 18-crown-6 with acetone and chloroform, along with scanning electron microscopic images, reveal the role of solvent molecules in determining the chirality of the self-assembly.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500481"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crown Ether-Promoted Helical Self-Assembly of Achiral Molecules: Symmetry Breaking in Cocrystallization of Octafluorobenzidine with 18-Crown-6.\",\"authors\":\"Tamara Vaganova, Yurij Gatilov, Enrico Benassi, Haiyan Fan, Denis Pishchur, Evgenij Malykhin\",\"doi\":\"10.1002/cplu.202500481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>New H-bonded supramolecular assembliesare obtained using the polyfluorobiphenyl H-donor derivatives and 18-crown-6 ether. Cocrystals of octafluorobenzidine with 18-crown-6 of 1:1 stoichiometry belong to the enantiomorphous space groups P6<sub>5</sub> and P6<sub>1</sub>. The helical self-assembly of these achiral molecules is achieved due to the interplanar angle of the bis-aryl molecule (≈60°), which is fixed by directed N-H···O<sub>cr</sub> H-bonds between two H<sub>amino</sub> atoms with two O<sub>cr</sub> atoms at both ends of the molecule. Cocrystallization of octafluorobiphenol results in the formation of a crystalline hydrate based on the water-mediated H-bond Ar-O-H···O(H)-H···O<sub>cr</sub>. Flexible water linker eliminates the effect of the H-donor coformer structure and makes this cocrystal achiral. The hydrogen bonding details between octafluorobenzidine and 18-crown-6 within a unit cell are investigated through a combination of vibrational spectroscopy and quantum mechanical calculations. An oxygen atom in 18-crown-6 is identified as a chiral center, as a result of intermolecular interactions involving this atom and hydrogen atoms bonded to its α and β carbon atoms. The unique interaction patterns of 18-crown-6 with acetone and chloroform, along with scanning electron microscopic images, reveal the role of solvent molecules in determining the chirality of the self-assembly.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202500481\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202500481\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202500481","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Crown Ether-Promoted Helical Self-Assembly of Achiral Molecules: Symmetry Breaking in Cocrystallization of Octafluorobenzidine with 18-Crown-6.
New H-bonded supramolecular assembliesare obtained using the polyfluorobiphenyl H-donor derivatives and 18-crown-6 ether. Cocrystals of octafluorobenzidine with 18-crown-6 of 1:1 stoichiometry belong to the enantiomorphous space groups P65 and P61. The helical self-assembly of these achiral molecules is achieved due to the interplanar angle of the bis-aryl molecule (≈60°), which is fixed by directed N-H···Ocr H-bonds between two Hamino atoms with two Ocr atoms at both ends of the molecule. Cocrystallization of octafluorobiphenol results in the formation of a crystalline hydrate based on the water-mediated H-bond Ar-O-H···O(H)-H···Ocr. Flexible water linker eliminates the effect of the H-donor coformer structure and makes this cocrystal achiral. The hydrogen bonding details between octafluorobenzidine and 18-crown-6 within a unit cell are investigated through a combination of vibrational spectroscopy and quantum mechanical calculations. An oxygen atom in 18-crown-6 is identified as a chiral center, as a result of intermolecular interactions involving this atom and hydrogen atoms bonded to its α and β carbon atoms. The unique interaction patterns of 18-crown-6 with acetone and chloroform, along with scanning electron microscopic images, reveal the role of solvent molecules in determining the chirality of the self-assembly.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.