DNA计算:DNA电路和数据存储。

IF 6.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hang Xu, Yifan Yu, Peixin Li, Shaowei Liu, Xuehui Yan, Zhaoyu Zhou, Ye Tian
{"title":"DNA计算:DNA电路和数据存储。","authors":"Hang Xu, Yifan Yu, Peixin Li, Shaowei Liu, Xuehui Yan, Zhaoyu Zhou, Ye Tian","doi":"10.1039/d5nh00459d","DOIUrl":null,"url":null,"abstract":"<p><p>Computation has consistently served as a significant indicator and direction of social development, and volume, speed, and accuracy are critical factors during development. To accelerate this computational process, various advanced technologies and constantly optimized computational methods have been developed, such as upgrading chip design and proposing quantum and photonic computing. Recently, DNA computing, as a unique computational model distinct from traditional methods, offers remarkable advantages and addresses problems that are difficult to solve with conventional computing. By designing DNA molecules and utilizing their spontaneous reactions, specific types of complex problems can be solved, such as combinatorial optimization, traveling salesman, Sudoku and other nondeterministic polynomial time (NP) problems. Based on the spontaneity of reactions, this type of computation exhibits high parallelism, making DNA computing a viable solution for high-complexity problems. This review presents an overview of the theoretical foundations of DNA computing and summarizes three distinct advantages to over traditional computing: high parallelism, efficient storage, and low energy consumption. Furthermore, based on these advantages, we assess the current state of development in two critical branches of DNA computing: DNA circuit and DNA information storage, and provide unique insights for the future development of DNA computing.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA computing: DNA circuits and data storage.\",\"authors\":\"Hang Xu, Yifan Yu, Peixin Li, Shaowei Liu, Xuehui Yan, Zhaoyu Zhou, Ye Tian\",\"doi\":\"10.1039/d5nh00459d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computation has consistently served as a significant indicator and direction of social development, and volume, speed, and accuracy are critical factors during development. To accelerate this computational process, various advanced technologies and constantly optimized computational methods have been developed, such as upgrading chip design and proposing quantum and photonic computing. Recently, DNA computing, as a unique computational model distinct from traditional methods, offers remarkable advantages and addresses problems that are difficult to solve with conventional computing. By designing DNA molecules and utilizing their spontaneous reactions, specific types of complex problems can be solved, such as combinatorial optimization, traveling salesman, Sudoku and other nondeterministic polynomial time (NP) problems. Based on the spontaneity of reactions, this type of computation exhibits high parallelism, making DNA computing a viable solution for high-complexity problems. This review presents an overview of the theoretical foundations of DNA computing and summarizes three distinct advantages to over traditional computing: high parallelism, efficient storage, and low energy consumption. Furthermore, based on these advantages, we assess the current state of development in two critical branches of DNA computing: DNA circuit and DNA information storage, and provide unique insights for the future development of DNA computing.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00459d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00459d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

计算一直是社会发展的重要指标和方向,体积、速度和准确性是发展的关键因素。为了加速这一计算过程,各种先进技术和不断优化的计算方法被开发出来,例如升级芯片设计,提出量子和光子计算。近年来,DNA计算作为一种不同于传统计算方法的独特计算模型,具有显著的优势,解决了传统计算难以解决的问题。通过设计DNA分子并利用其自发反应,可以解决特定类型的复杂问题,如组合优化、旅行推销员、数独和其他不确定多项式时间(NP)问题。基于反应的自发性,这种类型的计算表现出高度并行性,使DNA计算成为高复杂性问题的可行解决方案。本文概述了DNA计算的理论基础,并总结了DNA计算相对于传统计算的三个明显优势:高并行性、高效存储和低能耗。此外,基于这些优势,我们评估了DNA计算的两个关键分支:DNA电路和DNA信息存储的发展现状,并为DNA计算的未来发展提供了独特的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA computing: DNA circuits and data storage.

Computation has consistently served as a significant indicator and direction of social development, and volume, speed, and accuracy are critical factors during development. To accelerate this computational process, various advanced technologies and constantly optimized computational methods have been developed, such as upgrading chip design and proposing quantum and photonic computing. Recently, DNA computing, as a unique computational model distinct from traditional methods, offers remarkable advantages and addresses problems that are difficult to solve with conventional computing. By designing DNA molecules and utilizing their spontaneous reactions, specific types of complex problems can be solved, such as combinatorial optimization, traveling salesman, Sudoku and other nondeterministic polynomial time (NP) problems. Based on the spontaneity of reactions, this type of computation exhibits high parallelism, making DNA computing a viable solution for high-complexity problems. This review presents an overview of the theoretical foundations of DNA computing and summarizes three distinct advantages to over traditional computing: high parallelism, efficient storage, and low energy consumption. Furthermore, based on these advantages, we assess the current state of development in two critical branches of DNA computing: DNA circuit and DNA information storage, and provide unique insights for the future development of DNA computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信