电离势的低成本双分量相对论运动方程耦合簇方法。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Somesh Chamoli, , , Malaya K. Nayak, , and , Achintya Kumar Dutta*, 
{"title":"电离势的低成本双分量相对论运动方程耦合簇方法。","authors":"Somesh Chamoli,&nbsp;, ,&nbsp;Malaya K. Nayak,&nbsp;, and ,&nbsp;Achintya Kumar Dutta*,&nbsp;","doi":"10.1021/acs.jctc.5c00965","DOIUrl":null,"url":null,"abstract":"<p >We report an efficient implementation of the ionization potential (IP) variant of the equation-of-motion coupled cluster (IP-EOM-CC) method based on the exact two-component atomic mean field (X2CAMF) framework, utilizing Cholesky decomposition (CD) and frozen natural spinors (FNS). The CD approximation significantly reduces memory demands, whereas the FNS approximation lowers the number of floating-point operations. Together, these techniques make the method computationally efficient for accurate relativistic IP-EOM-CC calculations of molecules containing heavy elements. The calculated IP values are almost identical to those obtained by the four-component relativistic IP-EOM-CC method. Benchmark studies show good agreement with experimental ionization energies and photoelectron spectra, demonstrating the method’s reliability. The practical applicability of the approach is demonstrated by IP calculations on the medium-sized [I(H<sub>2</sub>O)<sub>12</sub>]<sup>−</sup> complex, with 1698 virtual spinors.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 18","pages":"8823–8832"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reduced Cost Two-Component Relativistic Equation-of-Motion Coupled Cluster Method for Ionization Potential\",\"authors\":\"Somesh Chamoli,&nbsp;, ,&nbsp;Malaya K. Nayak,&nbsp;, and ,&nbsp;Achintya Kumar Dutta*,&nbsp;\",\"doi\":\"10.1021/acs.jctc.5c00965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report an efficient implementation of the ionization potential (IP) variant of the equation-of-motion coupled cluster (IP-EOM-CC) method based on the exact two-component atomic mean field (X2CAMF) framework, utilizing Cholesky decomposition (CD) and frozen natural spinors (FNS). The CD approximation significantly reduces memory demands, whereas the FNS approximation lowers the number of floating-point operations. Together, these techniques make the method computationally efficient for accurate relativistic IP-EOM-CC calculations of molecules containing heavy elements. The calculated IP values are almost identical to those obtained by the four-component relativistic IP-EOM-CC method. Benchmark studies show good agreement with experimental ionization energies and photoelectron spectra, demonstrating the method’s reliability. The practical applicability of the approach is demonstrated by IP calculations on the medium-sized [I(H<sub>2</sub>O)<sub>12</sub>]<sup>−</sup> complex, with 1698 virtual spinors.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"21 18\",\"pages\":\"8823–8832\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00965\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00965","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了基于精确双分量原子平均场(X2CAMF)框架,利用Cholesky分解(CD)和冷冻天然旋量(FNS),有效实现了运动方程耦合簇(IP- eom - cc)方法的电离势(IP)变体。CD近似显著降低了内存需求,而FNS近似降低了浮点操作的数量。总之,这些技术使得该方法计算效率高,可以精确计算含有重元素的分子的相对论性IP-EOM-CC。计算得到的IP值与四分量相对论IP- eom - cc法得到的IP值几乎相同。基准实验表明,该方法与实验电离能和光电子能谱吻合较好,证明了该方法的可靠性。通过在具有1698个虚拟旋量的中型[I(H2O)12]-复合体上的IP计算,证明了该方法的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Reduced Cost Two-Component Relativistic Equation-of-Motion Coupled Cluster Method for Ionization Potential

A Reduced Cost Two-Component Relativistic Equation-of-Motion Coupled Cluster Method for Ionization Potential

We report an efficient implementation of the ionization potential (IP) variant of the equation-of-motion coupled cluster (IP-EOM-CC) method based on the exact two-component atomic mean field (X2CAMF) framework, utilizing Cholesky decomposition (CD) and frozen natural spinors (FNS). The CD approximation significantly reduces memory demands, whereas the FNS approximation lowers the number of floating-point operations. Together, these techniques make the method computationally efficient for accurate relativistic IP-EOM-CC calculations of molecules containing heavy elements. The calculated IP values are almost identical to those obtained by the four-component relativistic IP-EOM-CC method. Benchmark studies show good agreement with experimental ionization energies and photoelectron spectra, demonstrating the method’s reliability. The practical applicability of the approach is demonstrated by IP calculations on the medium-sized [I(H2O)12] complex, with 1698 virtual spinors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信