机器学习驱动的等离子模式识别:用于儿茶酚胺神经递质的多重尿液分析的蚀刻抑制金纳米棒。

IF 2.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Mahsa Daneshmandi, Afsaneh Orouji and Mohammad Reza Hormozi-Nezhad
{"title":"机器学习驱动的等离子模式识别:用于儿茶酚胺神经递质的多重尿液分析的蚀刻抑制金纳米棒。","authors":"Mahsa Daneshmandi, Afsaneh Orouji and Mohammad Reza Hormozi-Nezhad","doi":"10.1039/D5AY00976F","DOIUrl":null,"url":null,"abstract":"<p >Simultaneous monitoring of catecholamine neurotransmitters (CNTs)—including epinephrine (Epi), norepinephrine (NE), levodopa (L-DOPA), and dopamine (DA)—is essential for the accurate diagnosis and effective management of various neurological disorders. However, most existing sensing platforms face challenges such as limited multiplexing capabilities and potential cytotoxicity of the sensing components. In this work, we introduce a sensitive, non-toxic, and non-invasive single-component multicolorimetric probe capable of detecting and distinguishing low concentrations of Epi, NE, L-DOPA, and DA, along with their binary, ternary, and quaternary mixtures. The sensing mechanism relies on the controlled inhibition of gold nanorod (AuNR) etching in the presence of varying concentrations of <em>N</em>-bromosuccinimide (NBS), a mild oxidizing agent, under ambient conditions. To enable robust analyte identification and quantification, the spectral responses were processed using machine learning algorithms—specifically, linear discriminant analysis (LDA) for classification and partial least squares regression (PLSR) for concentration prediction. Under the optimized conditions, the assay demonstrated excellent linearity across a broad concentration range for each analyte, Epi (1.8–20 μmol L<small><sup>−1</sup></small>), NE (1.4–25 μmol L<small><sup>−1</sup></small>), L-DOPA (1.5–25 μmol L<small><sup>−1</sup></small>), and DA (2.8–50 μmol L<small><sup>−1</sup></small>), with corresponding detection limits of 0.62, 0.47, 0.49, and 0.92 μmol L<small><sup>−1</sup></small>. The practical utility of the platform was validated through successful application to human urine samples, confirming its potential as a powerful tool for point-of-care diagnostics and clinical neurochemical analysis.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" 37","pages":" 7390-7401"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-powered plasmonic pattern recognition: etch-suppressed gold nanorods for multiplex urinary analysis of catecholamine neurotransmitters\",\"authors\":\"Mahsa Daneshmandi, Afsaneh Orouji and Mohammad Reza Hormozi-Nezhad\",\"doi\":\"10.1039/D5AY00976F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Simultaneous monitoring of catecholamine neurotransmitters (CNTs)—including epinephrine (Epi), norepinephrine (NE), levodopa (L-DOPA), and dopamine (DA)—is essential for the accurate diagnosis and effective management of various neurological disorders. However, most existing sensing platforms face challenges such as limited multiplexing capabilities and potential cytotoxicity of the sensing components. In this work, we introduce a sensitive, non-toxic, and non-invasive single-component multicolorimetric probe capable of detecting and distinguishing low concentrations of Epi, NE, L-DOPA, and DA, along with their binary, ternary, and quaternary mixtures. The sensing mechanism relies on the controlled inhibition of gold nanorod (AuNR) etching in the presence of varying concentrations of <em>N</em>-bromosuccinimide (NBS), a mild oxidizing agent, under ambient conditions. To enable robust analyte identification and quantification, the spectral responses were processed using machine learning algorithms—specifically, linear discriminant analysis (LDA) for classification and partial least squares regression (PLSR) for concentration prediction. Under the optimized conditions, the assay demonstrated excellent linearity across a broad concentration range for each analyte, Epi (1.8–20 μmol L<small><sup>−1</sup></small>), NE (1.4–25 μmol L<small><sup>−1</sup></small>), L-DOPA (1.5–25 μmol L<small><sup>−1</sup></small>), and DA (2.8–50 μmol L<small><sup>−1</sup></small>), with corresponding detection limits of 0.62, 0.47, 0.49, and 0.92 μmol L<small><sup>−1</sup></small>. The practical utility of the platform was validated through successful application to human urine samples, confirming its potential as a powerful tool for point-of-care diagnostics and clinical neurochemical analysis.</p>\",\"PeriodicalId\":64,\"journal\":{\"name\":\"Analytical Methods\",\"volume\":\" 37\",\"pages\":\" 7390-7401\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d5ay00976f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d5ay00976f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

同时监测儿茶酚胺类神经递质(CNTs)——包括肾上腺素(Epi)、去甲肾上腺素(NE)、左旋多巴(L-DOPA)和多巴胺(DA)——对于各种神经系统疾病的准确诊断和有效治疗至关重要。然而,大多数现有的传感平台都面临着诸如有限的多路复用能力和传感组件潜在的细胞毒性等挑战。在这项工作中,我们介绍了一种敏感、无毒、无创的单组分多色探针,能够检测和区分低浓度的Epi、NE、L-DOPA和DA,以及它们的二元、三元和四元混合物。该传感机制依赖于在环境条件下,在不同浓度的n -溴代琥珀酰亚胺(NBS)(一种温和的氧化剂)存在下,对金纳米棒(AuNR)蚀刻的控制抑制。为了实现稳健的分析物识别和定量,光谱响应使用机器学习算法进行处理,特别是线性判别分析(LDA)用于分类,偏最小二乘回归(PLSR)用于浓度预测。在优化条件下,Epi (1.8 ~ 20 μmol L-1)、NE (1.4 ~ 25 μmol L-1)、L-DOPA (1.5 ~ 25 μmol L-1)和DA (2.8 ~ 50 μmol L-1)在较宽的浓度范围内呈良好的线性关系,检出限分别为0.62、0.47、0.49和0.92 μmol L-1。通过对人类尿液样本的成功应用,验证了该平台的实用性,证实了其作为即时诊断和临床神经化学分析的强大工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning-powered plasmonic pattern recognition: etch-suppressed gold nanorods for multiplex urinary analysis of catecholamine neurotransmitters

Machine learning-powered plasmonic pattern recognition: etch-suppressed gold nanorods for multiplex urinary analysis of catecholamine neurotransmitters

Simultaneous monitoring of catecholamine neurotransmitters (CNTs)—including epinephrine (Epi), norepinephrine (NE), levodopa (L-DOPA), and dopamine (DA)—is essential for the accurate diagnosis and effective management of various neurological disorders. However, most existing sensing platforms face challenges such as limited multiplexing capabilities and potential cytotoxicity of the sensing components. In this work, we introduce a sensitive, non-toxic, and non-invasive single-component multicolorimetric probe capable of detecting and distinguishing low concentrations of Epi, NE, L-DOPA, and DA, along with their binary, ternary, and quaternary mixtures. The sensing mechanism relies on the controlled inhibition of gold nanorod (AuNR) etching in the presence of varying concentrations of N-bromosuccinimide (NBS), a mild oxidizing agent, under ambient conditions. To enable robust analyte identification and quantification, the spectral responses were processed using machine learning algorithms—specifically, linear discriminant analysis (LDA) for classification and partial least squares regression (PLSR) for concentration prediction. Under the optimized conditions, the assay demonstrated excellent linearity across a broad concentration range for each analyte, Epi (1.8–20 μmol L−1), NE (1.4–25 μmol L−1), L-DOPA (1.5–25 μmol L−1), and DA (2.8–50 μmol L−1), with corresponding detection limits of 0.62, 0.47, 0.49, and 0.92 μmol L−1. The practical utility of the platform was validated through successful application to human urine samples, confirming its potential as a powerful tool for point-of-care diagnostics and clinical neurochemical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信