分裂NeissLock与间谍加速臂哺乳动物蛋白介导的细胞连接。

IF 3.8 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sheryl Y. T. Lim, , , Anthony H. Keeble, , and , Mark R. Howarth*, 
{"title":"分裂NeissLock与间谍加速臂哺乳动物蛋白介导的细胞连接。","authors":"Sheryl Y. T. Lim,&nbsp;, ,&nbsp;Anthony H. Keeble,&nbsp;, and ,&nbsp;Mark R. Howarth*,&nbsp;","doi":"10.1021/acschembio.5c00515","DOIUrl":null,"url":null,"abstract":"<p >Reactive functional groups may be incorporated into proteins or may emerge from natural amino acids in exceptional architectures. Anhydride formation is triggered by calcium in the self-processing module (SPM) of <i>Neisseria meningitidis</i> FrpC, which we previously engineered for “NeissLock” ligation to an unmodified target protein. Here, we explored bacterial diversity, discovering a related module with ultrafast anhydride formation. We dissected this swift SPM to generate a split NeissLock system, providing a second layer of control of anhydride generation: first mixing N- and C-terminal NeissLock moieties and second adding millimolar amounts of calcium. Split NeissLock generated a minimal fusion tag, permitting binder expression in mammalian cells with complex post-translational modifications and avoiding self-cleavage while transiting the calcium-rich secretory pathway. Employing spontaneous amidation between SpyTag003 and SpyCatcher003, we dramatically accelerated split NeissLock reconstitution, allowing a rapid high-yield reaction to naturally occurring targets. We established a specific covalent reaction to endogenous Epidermal Growth Factor Receptor using split NeissLock via Transforming Growth Factor-α secreted from mammalian cells. Modular ligation was demonstrated on living cells through site-specific coupling of the clot-busting enzyme tissue plasminogen activator or a computationally designed cytokine. Split NeissLock provides a modular architecture to generate highly reactive functionality, with inducibility and simple genetic encoding for enhanced cellular modification.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"20 10","pages":"2475–2482"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acschembio.5c00515","citationCount":"0","resultStr":"{\"title\":\"Split NeissLock with Spy-Acceleration Arms Mammalian Proteins for Anhydride-Mediated Cell Ligation\",\"authors\":\"Sheryl Y. T. Lim,&nbsp;, ,&nbsp;Anthony H. Keeble,&nbsp;, and ,&nbsp;Mark R. Howarth*,&nbsp;\",\"doi\":\"10.1021/acschembio.5c00515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Reactive functional groups may be incorporated into proteins or may emerge from natural amino acids in exceptional architectures. Anhydride formation is triggered by calcium in the self-processing module (SPM) of <i>Neisseria meningitidis</i> FrpC, which we previously engineered for “NeissLock” ligation to an unmodified target protein. Here, we explored bacterial diversity, discovering a related module with ultrafast anhydride formation. We dissected this swift SPM to generate a split NeissLock system, providing a second layer of control of anhydride generation: first mixing N- and C-terminal NeissLock moieties and second adding millimolar amounts of calcium. Split NeissLock generated a minimal fusion tag, permitting binder expression in mammalian cells with complex post-translational modifications and avoiding self-cleavage while transiting the calcium-rich secretory pathway. Employing spontaneous amidation between SpyTag003 and SpyCatcher003, we dramatically accelerated split NeissLock reconstitution, allowing a rapid high-yield reaction to naturally occurring targets. We established a specific covalent reaction to endogenous Epidermal Growth Factor Receptor using split NeissLock via Transforming Growth Factor-α secreted from mammalian cells. Modular ligation was demonstrated on living cells through site-specific coupling of the clot-busting enzyme tissue plasminogen activator or a computationally designed cytokine. Split NeissLock provides a modular architecture to generate highly reactive functionality, with inducibility and simple genetic encoding for enhanced cellular modification.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\"20 10\",\"pages\":\"2475–2482\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acschembio.5c00515\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acschembio.5c00515\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschembio.5c00515","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

反应性官能团可以结合到蛋白质中,也可以从特殊结构的天然氨基酸中产生。酸酐的形成是由脑膜炎奈瑟菌FrpC的自加工模块(SPM)中的钙触发的,我们之前设计了“NeissLock”连接到未修饰的靶蛋白上。在这里,我们探索了细菌多样性,发现了一个与超快酸酐形成相关的模块。我们对这种快速SPM进行了解剖,生成了一个分裂的NeissLock系统,提供了对酸酐生成的第二层控制:首先混合N端和c端NeissLock部分,然后添加微摩尔量的钙。Split NeissLock产生了一个最小的融合标签,允许结合物在哺乳动物细胞中表达,具有复杂的翻译后修饰,并且在传递富钙分泌途径时避免了自裂。利用SpyTag003和SpyCatcher003之间的自发修饰,我们极大地加速了分裂NeissLock重构,允许对自然发生的目标进行快速高产反应。我们通过哺乳动物细胞分泌的转化生长因子-α,利用分裂的NeissLock建立了内源性表皮生长因子受体的特异性共价反应。模块化的连接被证明是在活细胞上通过位点特异性偶联的凝块破坏酶组织纤溶酶原激活剂或计算设计的细胞因子。Split NeissLock提供了一个模块化的架构,以产生高度反应的功能,具有诱导性和简单的基因编码,增强细胞修饰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Split NeissLock with Spy-Acceleration Arms Mammalian Proteins for Anhydride-Mediated Cell Ligation

Reactive functional groups may be incorporated into proteins or may emerge from natural amino acids in exceptional architectures. Anhydride formation is triggered by calcium in the self-processing module (SPM) of Neisseria meningitidis FrpC, which we previously engineered for “NeissLock” ligation to an unmodified target protein. Here, we explored bacterial diversity, discovering a related module with ultrafast anhydride formation. We dissected this swift SPM to generate a split NeissLock system, providing a second layer of control of anhydride generation: first mixing N- and C-terminal NeissLock moieties and second adding millimolar amounts of calcium. Split NeissLock generated a minimal fusion tag, permitting binder expression in mammalian cells with complex post-translational modifications and avoiding self-cleavage while transiting the calcium-rich secretory pathway. Employing spontaneous amidation between SpyTag003 and SpyCatcher003, we dramatically accelerated split NeissLock reconstitution, allowing a rapid high-yield reaction to naturally occurring targets. We established a specific covalent reaction to endogenous Epidermal Growth Factor Receptor using split NeissLock via Transforming Growth Factor-α secreted from mammalian cells. Modular ligation was demonstrated on living cells through site-specific coupling of the clot-busting enzyme tissue plasminogen activator or a computationally designed cytokine. Split NeissLock provides a modular architecture to generate highly reactive functionality, with inducibility and simple genetic encoding for enhanced cellular modification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信