铁硫键对双原子铁位电子结构裁剪的影响。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lingmin Wu, Chunfeng Shao, Liming Wang, Baitao Li
{"title":"铁硫键对双原子铁位电子结构裁剪的影响。","authors":"Lingmin Wu, Chunfeng Shao, Liming Wang, Baitao Li","doi":"10.1002/smtd.202501359","DOIUrl":null,"url":null,"abstract":"<p><p>In oxygen reduction reaction (ORR), increasing metal loading in dual-atomic catalyst easily leads to metal aggregation, resulting in the formation of clusters or nanoparticles. Herein, a new approach involving sulfur incorporation is developed to preserve the dual-atomic structure and regulate the electrons of Fe<sub>2</sub>-NC dual atomic catalyst, without resorting to simply increasing metal loading. The optimized Fe<sub>2</sub>-S/NC-6 catalyst with Fe─S bond demonstrated exceptional ORR activity in pH-universal electrolytes, boosting the most positive E<sub>1/2</sub> values (0.902 V in alkaline, 0.689 V in neutral and 0.781 V in acidic solution). Theoretical study revealed that Fe<sub>2</sub>-S/NC catalyst with Fe─S bond and Fe<sub>2</sub>-NC/S catalyst with thiophene-like sulfur both can decrease the d-band center of Fe sites compared to Fe<sub>2</sub>-NC without sulfur, and weaken the adsorption with OH* intermediate. In the case of Fe─S bond, this decline is more notable. The predicted ORR performance ranked in the sequence of Fe<sub>2</sub>-S/NC > Fe<sub>2</sub>-NC/S > Fe<sub>2</sub>-NC. The Fe<sub>2</sub>-S/NC-6-based Zn-Air battery (ZAB) and microbial fuel cell (MFC) exhibited remarkable power density (317.1 mW cm<sup>-2</sup> for ZAB, 2074 ± 66 mW m<sup>-2</sup> for MFC) with prominent stability. This work innovatively highlighted the role of Fe─S bond in regulating the electron structure of dual-atomic Fe<sub>2</sub>-NC catalyst aiming to the excellent ORR performance.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01359"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Iron-Sulfur Bond on Tailoring the Electron Structure in Dual-Atomic Iron Sites for Enhanced Oxygen Reduction Reaction.\",\"authors\":\"Lingmin Wu, Chunfeng Shao, Liming Wang, Baitao Li\",\"doi\":\"10.1002/smtd.202501359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In oxygen reduction reaction (ORR), increasing metal loading in dual-atomic catalyst easily leads to metal aggregation, resulting in the formation of clusters or nanoparticles. Herein, a new approach involving sulfur incorporation is developed to preserve the dual-atomic structure and regulate the electrons of Fe<sub>2</sub>-NC dual atomic catalyst, without resorting to simply increasing metal loading. The optimized Fe<sub>2</sub>-S/NC-6 catalyst with Fe─S bond demonstrated exceptional ORR activity in pH-universal electrolytes, boosting the most positive E<sub>1/2</sub> values (0.902 V in alkaline, 0.689 V in neutral and 0.781 V in acidic solution). Theoretical study revealed that Fe<sub>2</sub>-S/NC catalyst with Fe─S bond and Fe<sub>2</sub>-NC/S catalyst with thiophene-like sulfur both can decrease the d-band center of Fe sites compared to Fe<sub>2</sub>-NC without sulfur, and weaken the adsorption with OH* intermediate. In the case of Fe─S bond, this decline is more notable. The predicted ORR performance ranked in the sequence of Fe<sub>2</sub>-S/NC > Fe<sub>2</sub>-NC/S > Fe<sub>2</sub>-NC. The Fe<sub>2</sub>-S/NC-6-based Zn-Air battery (ZAB) and microbial fuel cell (MFC) exhibited remarkable power density (317.1 mW cm<sup>-2</sup> for ZAB, 2074 ± 66 mW m<sup>-2</sup> for MFC) with prominent stability. This work innovatively highlighted the role of Fe─S bond in regulating the electron structure of dual-atomic Fe<sub>2</sub>-NC catalyst aiming to the excellent ORR performance.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01359\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501359\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501359","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在氧还原反应(ORR)中,增加双原子催化剂中金属的负载容易导致金属聚集,从而形成团簇或纳米颗粒。本文提出了一种涉及硫掺入的新方法,以保持Fe2-NC双原子催化剂的双原子结构并调节电子,而不需要简单地增加金属负载。优化后的具有Fe─S键的Fe2-S/NC-6催化剂在ph通用的电解质中表现出优异的ORR活性,提高了最正的E1/2值(碱性溶液0.902 V,中性溶液0.689 V,酸性溶液0.781 V)。理论研究表明,与不含硫的Fe2-NC相比,含Fe─S键的Fe2-S/NC催化剂和含噻吩类硫的Fe2-NC/S催化剂都能降低Fe位点的d波段中心,并减弱对OH*中间体的吸附。在Fe─S键的情况下,这种下降更为显著。预测的ORR性能依次为Fe2-S/NC > Fe2-NC/S > Fe2-NC。基于Fe2-S/ nc -6的Zn-Air电池(ZAB)和微生物燃料电池(MFC)的功率密度(ZAB为317.1 mW m-2, MFC为2074±66 mW m-2)具有显著的稳定性。本工作创新性地突出了Fe─S键在调节双原子Fe2-NC催化剂电子结构中的作用,旨在获得优异的ORR性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Iron-Sulfur Bond on Tailoring the Electron Structure in Dual-Atomic Iron Sites for Enhanced Oxygen Reduction Reaction.

In oxygen reduction reaction (ORR), increasing metal loading in dual-atomic catalyst easily leads to metal aggregation, resulting in the formation of clusters or nanoparticles. Herein, a new approach involving sulfur incorporation is developed to preserve the dual-atomic structure and regulate the electrons of Fe2-NC dual atomic catalyst, without resorting to simply increasing metal loading. The optimized Fe2-S/NC-6 catalyst with Fe─S bond demonstrated exceptional ORR activity in pH-universal electrolytes, boosting the most positive E1/2 values (0.902 V in alkaline, 0.689 V in neutral and 0.781 V in acidic solution). Theoretical study revealed that Fe2-S/NC catalyst with Fe─S bond and Fe2-NC/S catalyst with thiophene-like sulfur both can decrease the d-band center of Fe sites compared to Fe2-NC without sulfur, and weaken the adsorption with OH* intermediate. In the case of Fe─S bond, this decline is more notable. The predicted ORR performance ranked in the sequence of Fe2-S/NC > Fe2-NC/S > Fe2-NC. The Fe2-S/NC-6-based Zn-Air battery (ZAB) and microbial fuel cell (MFC) exhibited remarkable power density (317.1 mW cm-2 for ZAB, 2074 ± 66 mW m-2 for MFC) with prominent stability. This work innovatively highlighted the role of Fe─S bond in regulating the electron structure of dual-atomic Fe2-NC catalyst aiming to the excellent ORR performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信