氧化锌纳米线与支链碳纳米管混合制备聚偏氟乙烯纳米复合材料的压电性能

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Müslüm Kaplan, Emre Alp, İsmail Borazan, Beate Krause, Petra Pötschke
{"title":"氧化锌纳米线与支链碳纳米管混合制备聚偏氟乙烯纳米复合材料的压电性能","authors":"Müslüm Kaplan,&nbsp;Emre Alp,&nbsp;İsmail Borazan,&nbsp;Beate Krause,&nbsp;Petra Pötschke","doi":"10.1002/mame.202500122","DOIUrl":null,"url":null,"abstract":"<p>This study presents the development of high-performance poly(vinylidene fluoride) (PVDF) based piezoelectric nanocomposites incorporating branched carbon nanotubes (bCNTs) and zinc oxide nanowires (ZnO NWs) through a scalable melt mixing process. ZnONWs with uniform morphology (mean diameter: 36.5 nm) are successfully synthesized and characterized. FTIR analysis confirms that incorporating bCNTs into PVDF significantly enhances the β-phase content, while adding ZnO NWs (1–10 wt.%) resulted in progressive intensification of β-phase characteristic peaks, with higher ZnO content showing stronger electroactive phase formation. The optimized composition (PVDF/0.5 wt.% bCNTs/5 wt.% ZnO NWs) demonstrates superior piezoelectric performance with a power density of 5.62 µW cm<sup>−</sup><sup>2</sup>, voltage output of 1.55 V, and current output of 14.48 µA. Moreover, the composite exhibits excellent mechanical properties with a tensile strength of 48 MPa and maintains stable performance under cyclic loading. The enhanced performance is attributed to the synergistic effect between bCNTs and ZnO NWs, optimal β-phase formation, and efficient charge transfer pathways. This study demonstrates the potential of melt-mixed PVDF nanocomposites for practical energy harvesting applications.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500122","citationCount":"0","resultStr":"{\"title\":\"Enhanced Piezoelectric Performance of Poly(Vinylidene Fluoride) Nanocomposites with Synthesized Zinc Oxide Nanowires and Branched Carbon Nanotubes via Melt Mixing Process\",\"authors\":\"Müslüm Kaplan,&nbsp;Emre Alp,&nbsp;İsmail Borazan,&nbsp;Beate Krause,&nbsp;Petra Pötschke\",\"doi\":\"10.1002/mame.202500122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents the development of high-performance poly(vinylidene fluoride) (PVDF) based piezoelectric nanocomposites incorporating branched carbon nanotubes (bCNTs) and zinc oxide nanowires (ZnO NWs) through a scalable melt mixing process. ZnONWs with uniform morphology (mean diameter: 36.5 nm) are successfully synthesized and characterized. FTIR analysis confirms that incorporating bCNTs into PVDF significantly enhances the β-phase content, while adding ZnO NWs (1–10 wt.%) resulted in progressive intensification of β-phase characteristic peaks, with higher ZnO content showing stronger electroactive phase formation. The optimized composition (PVDF/0.5 wt.% bCNTs/5 wt.% ZnO NWs) demonstrates superior piezoelectric performance with a power density of 5.62 µW cm<sup>−</sup><sup>2</sup>, voltage output of 1.55 V, and current output of 14.48 µA. Moreover, the composite exhibits excellent mechanical properties with a tensile strength of 48 MPa and maintains stable performance under cyclic loading. The enhanced performance is attributed to the synergistic effect between bCNTs and ZnO NWs, optimal β-phase formation, and efficient charge transfer pathways. This study demonstrates the potential of melt-mixed PVDF nanocomposites for practical energy harvesting applications.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"310 9\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500122\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500122\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500122","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过可扩展的熔体混合工艺,开发了包含支链碳纳米管(bCNTs)和氧化锌纳米线(ZnO NWs)的高性能聚偏氟乙烯(PVDF)基压电纳米复合材料。成功合成了形貌均匀(平均直径36.5 nm)的ZnONWs。FTIR分析证实,在PVDF中加入bCNTs可显著提高β相含量,而加入ZnO NWs (1-10 wt.%)可使β相特征峰逐渐增强,且ZnO含量越高,电活性相形成越强。优化后的结构(PVDF/0.5 wt.% bCNTs/5 wt.% ZnO NWs)具有优异的压电性能,功率密度为5.62 μ W cm - 2,输出电压为1.55 V,输出电流为14.48 μ a。复合材料具有优异的力学性能,抗拉强度达48 MPa,在循环加载下性能稳定。bCNTs和ZnO NWs之间的协同作用、最佳的β相形成和高效的电荷转移途径是性能增强的原因。该研究证明了熔融混合PVDF纳米复合材料在实际能量收集应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Piezoelectric Performance of Poly(Vinylidene Fluoride) Nanocomposites with Synthesized Zinc Oxide Nanowires and Branched Carbon Nanotubes via Melt Mixing Process

Enhanced Piezoelectric Performance of Poly(Vinylidene Fluoride) Nanocomposites with Synthesized Zinc Oxide Nanowires and Branched Carbon Nanotubes via Melt Mixing Process

This study presents the development of high-performance poly(vinylidene fluoride) (PVDF) based piezoelectric nanocomposites incorporating branched carbon nanotubes (bCNTs) and zinc oxide nanowires (ZnO NWs) through a scalable melt mixing process. ZnONWs with uniform morphology (mean diameter: 36.5 nm) are successfully synthesized and characterized. FTIR analysis confirms that incorporating bCNTs into PVDF significantly enhances the β-phase content, while adding ZnO NWs (1–10 wt.%) resulted in progressive intensification of β-phase characteristic peaks, with higher ZnO content showing stronger electroactive phase formation. The optimized composition (PVDF/0.5 wt.% bCNTs/5 wt.% ZnO NWs) demonstrates superior piezoelectric performance with a power density of 5.62 µW cm2, voltage output of 1.55 V, and current output of 14.48 µA. Moreover, the composite exhibits excellent mechanical properties with a tensile strength of 48 MPa and maintains stable performance under cyclic loading. The enhanced performance is attributed to the synergistic effect between bCNTs and ZnO NWs, optimal β-phase formation, and efficient charge transfer pathways. This study demonstrates the potential of melt-mixed PVDF nanocomposites for practical energy harvesting applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信