MWCNTs的选择性功能化:增强环氧复合材料的磨损机制和摩擦诱导石墨化

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ravisrini Jayasinghe, Maximiano Ramos, Ashveen Nand, Maziar Ramezani
{"title":"MWCNTs的选择性功能化:增强环氧复合材料的磨损机制和摩擦诱导石墨化","authors":"Ravisrini Jayasinghe,&nbsp;Maximiano Ramos,&nbsp;Ashveen Nand,&nbsp;Maziar Ramezani","doi":"10.1002/mame.202500088","DOIUrl":null,"url":null,"abstract":"<p>This investigation elucidates a novel methodology for augmenting the tribological and mechanical attributes of epoxy composites via selective functionalization of multi-walled carbon nanotubes (MWCNTs). The study optimizes wear mechanisms and friction-induced graphitization by incorporating pristine (P-MWCNTs), carboxyl-functionalized (COOH-MWCNTs), amine-functionalized (NH₂-MWCNTs), and silane-modified MWCNTs. Composites were characterized for tensile strength, compressive strength, surface hardness, coefficient of friction (COF), and specific wear rate (SWR). Incorporation of 0.3 wt.% COOH-MWCNTs yielded optimal performance, reducing SWR by 82% (0.07 × 10⁻⁶ mm³ N⁻¹·m⁻¹ at 8 Hz) and COF by 32% (0.37 at 10 N) relative to neat epoxy (SWR: 0.50 × 10⁻⁶ mm³ N⁻¹·m⁻¹, COF: 0.66 at 15 N). Enhanced dispersion, interfacial adhesion, and tribofilm formation account for superior tensile strength (≈90 MPa) and hardness (≈88 Shore D). X-ray diffraction and transmission electron microscopy validated friction-induced graphitization and partial structural degradation above 10 N. Applications encompass self-lubricating bushings, protective coatings, and wear-resistant surfaces for automotive and industrial components. Future investigations should target enhanced compressive strength and load-bearing capacity.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500088","citationCount":"0","resultStr":"{\"title\":\"Selective Functionalization of MWCNTs: Enhancing Wear Mechanisms and Friction-Induced Graphitization in Epoxy Composites\",\"authors\":\"Ravisrini Jayasinghe,&nbsp;Maximiano Ramos,&nbsp;Ashveen Nand,&nbsp;Maziar Ramezani\",\"doi\":\"10.1002/mame.202500088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This investigation elucidates a novel methodology for augmenting the tribological and mechanical attributes of epoxy composites via selective functionalization of multi-walled carbon nanotubes (MWCNTs). The study optimizes wear mechanisms and friction-induced graphitization by incorporating pristine (P-MWCNTs), carboxyl-functionalized (COOH-MWCNTs), amine-functionalized (NH₂-MWCNTs), and silane-modified MWCNTs. Composites were characterized for tensile strength, compressive strength, surface hardness, coefficient of friction (COF), and specific wear rate (SWR). Incorporation of 0.3 wt.% COOH-MWCNTs yielded optimal performance, reducing SWR by 82% (0.07 × 10⁻⁶ mm³ N⁻¹·m⁻¹ at 8 Hz) and COF by 32% (0.37 at 10 N) relative to neat epoxy (SWR: 0.50 × 10⁻⁶ mm³ N⁻¹·m⁻¹, COF: 0.66 at 15 N). Enhanced dispersion, interfacial adhesion, and tribofilm formation account for superior tensile strength (≈90 MPa) and hardness (≈88 Shore D). X-ray diffraction and transmission electron microscopy validated friction-induced graphitization and partial structural degradation above 10 N. Applications encompass self-lubricating bushings, protective coatings, and wear-resistant surfaces for automotive and industrial components. Future investigations should target enhanced compressive strength and load-bearing capacity.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"310 9\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500088\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500088\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500088","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究阐明了一种通过选择性功能化多壁碳纳米管(MWCNTs)来增强环氧复合材料摩擦学和力学性能的新方法。该研究通过纳入原始(P-MWCNTs)、羧基功能化(COOH-MWCNTs)、胺功能化(NH₂-MWCNTs)和硅烷改性MWCNTs,优化了磨损机制和摩擦诱导石墨化。测试了复合材料的抗拉强度、抗压强度、表面硬度、摩擦系数(COF)和比磨损率(SWR)。加入0.3 wt.%的cooh - mwcnt产生了最佳的性能,相对于纯环氧树脂(SWR: 0.50 × 10⁻mm³N⁻·m⁻,COF: 0.66, 15 N),减少了82%的SWR (0.07 × 10⁻³N⁻·m⁻,8 Hz)和32%的COF (10 N时0.37)。增强的分散性、界面附着力和摩擦膜的形成使其具有优异的抗拉强度(≈90 MPa)和硬度(≈88 Shore D)。x射线衍射和透射电子显微镜验证了摩擦引起的石墨化和10 n以上的部分结构降解。应用范围包括自润滑轴套,保护涂层和汽车和工业部件的耐磨表面。未来的研究应针对增强抗压强度和承载能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selective Functionalization of MWCNTs: Enhancing Wear Mechanisms and Friction-Induced Graphitization in Epoxy Composites

Selective Functionalization of MWCNTs: Enhancing Wear Mechanisms and Friction-Induced Graphitization in Epoxy Composites

This investigation elucidates a novel methodology for augmenting the tribological and mechanical attributes of epoxy composites via selective functionalization of multi-walled carbon nanotubes (MWCNTs). The study optimizes wear mechanisms and friction-induced graphitization by incorporating pristine (P-MWCNTs), carboxyl-functionalized (COOH-MWCNTs), amine-functionalized (NH₂-MWCNTs), and silane-modified MWCNTs. Composites were characterized for tensile strength, compressive strength, surface hardness, coefficient of friction (COF), and specific wear rate (SWR). Incorporation of 0.3 wt.% COOH-MWCNTs yielded optimal performance, reducing SWR by 82% (0.07 × 10⁻⁶ mm³ N⁻¹·m⁻¹ at 8 Hz) and COF by 32% (0.37 at 10 N) relative to neat epoxy (SWR: 0.50 × 10⁻⁶ mm³ N⁻¹·m⁻¹, COF: 0.66 at 15 N). Enhanced dispersion, interfacial adhesion, and tribofilm formation account for superior tensile strength (≈90 MPa) and hardness (≈88 Shore D). X-ray diffraction and transmission electron microscopy validated friction-induced graphitization and partial structural degradation above 10 N. Applications encompass self-lubricating bushings, protective coatings, and wear-resistant surfaces for automotive and industrial components. Future investigations should target enhanced compressive strength and load-bearing capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信