多层热塑性复合材料的机器学习辅助设计:鲁棒神经网络预测和特征重要性分析

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weiqing Fang, Mark Duncan, Mahima Dua, Pierre Mertiny, Hani E. Naguib
{"title":"多层热塑性复合材料的机器学习辅助设计:鲁棒神经网络预测和特征重要性分析","authors":"Weiqing Fang,&nbsp;Mark Duncan,&nbsp;Mahima Dua,&nbsp;Pierre Mertiny,&nbsp;Hani E. Naguib","doi":"10.1002/mame.202500093","DOIUrl":null,"url":null,"abstract":"<p>Multilayer thermoplastic composites offer sustainable alternatives to traditional thermoset and metal materials. However, their design is inherently complex, involving numerous interdependent parameters that render conventional processes both expensive and time-consuming. While machine learning-assisted methods provide a potential solution, they typically require large datasets that can be costly to obtain. This study explores a robust neural network, specifically, an Advanced Multilayer Perceptron (AdvMLP) Regressor, to predict the peel strength of multilayer thermoplastic composites. Through architectural enhancements, the AdvMLP is effectively trained on a limited yet authentic manufacturing dataset, yielding robust predictions validated by benchmark metrics and k-fold cross-validation. The model captures the intricate interplay between manufacturing processes and composite properties, enabling comprehensive feature importance analysis and dimensionality reduction. Overall, this study establishes a robust and generalizable machine learning-assisted methodology to guide and accelerate the design and optimization of multilayer thermoplastic composites.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500093","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Assisted Design of Multilayer Thermoplastic Composites: Robust Neural Network Prediction and Feature Importance Analysis\",\"authors\":\"Weiqing Fang,&nbsp;Mark Duncan,&nbsp;Mahima Dua,&nbsp;Pierre Mertiny,&nbsp;Hani E. Naguib\",\"doi\":\"10.1002/mame.202500093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multilayer thermoplastic composites offer sustainable alternatives to traditional thermoset and metal materials. However, their design is inherently complex, involving numerous interdependent parameters that render conventional processes both expensive and time-consuming. While machine learning-assisted methods provide a potential solution, they typically require large datasets that can be costly to obtain. This study explores a robust neural network, specifically, an Advanced Multilayer Perceptron (AdvMLP) Regressor, to predict the peel strength of multilayer thermoplastic composites. Through architectural enhancements, the AdvMLP is effectively trained on a limited yet authentic manufacturing dataset, yielding robust predictions validated by benchmark metrics and k-fold cross-validation. The model captures the intricate interplay between manufacturing processes and composite properties, enabling comprehensive feature importance analysis and dimensionality reduction. Overall, this study establishes a robust and generalizable machine learning-assisted methodology to guide and accelerate the design and optimization of multilayer thermoplastic composites.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"310 9\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500093\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500093","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多层热塑性复合材料为传统热固性材料和金属材料提供了可持续的替代品。然而,它们的设计本质上是复杂的,涉及许多相互依赖的参数,使得传统的工艺既昂贵又耗时。虽然机器学习辅助方法提供了一个潜在的解决方案,但它们通常需要大量的数据集,而这些数据集的获取成本很高。本研究探索了一个鲁棒神经网络,特别是一个先进的多层感知器(AdvMLP)回归器,来预测多层热塑性复合材料的剥离强度。通过架构增强,AdvMLP可以在有限但真实的制造数据集上进行有效训练,并通过基准指标和k倍交叉验证产生稳健的预测。该模型捕捉了制造过程和复合材料性能之间复杂的相互作用,实现了全面的特征重要性分析和降维。总体而言,本研究建立了一种鲁棒且可推广的机器学习辅助方法,以指导和加速多层热塑性复合材料的设计和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning-Assisted Design of Multilayer Thermoplastic Composites: Robust Neural Network Prediction and Feature Importance Analysis

Machine Learning-Assisted Design of Multilayer Thermoplastic Composites: Robust Neural Network Prediction and Feature Importance Analysis

Multilayer thermoplastic composites offer sustainable alternatives to traditional thermoset and metal materials. However, their design is inherently complex, involving numerous interdependent parameters that render conventional processes both expensive and time-consuming. While machine learning-assisted methods provide a potential solution, they typically require large datasets that can be costly to obtain. This study explores a robust neural network, specifically, an Advanced Multilayer Perceptron (AdvMLP) Regressor, to predict the peel strength of multilayer thermoplastic composites. Through architectural enhancements, the AdvMLP is effectively trained on a limited yet authentic manufacturing dataset, yielding robust predictions validated by benchmark metrics and k-fold cross-validation. The model captures the intricate interplay between manufacturing processes and composite properties, enabling comprehensive feature importance analysis and dimensionality reduction. Overall, this study establishes a robust and generalizable machine learning-assisted methodology to guide and accelerate the design and optimization of multilayer thermoplastic composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信