结合第一性原理计算和机器学习研究钠离子电池ReNiO2/Ti3C2异质结

IF 2.8
Yuanyuan Cui, Chengyu Zhang, Luxin Niu, Jiao Zheng, Xin Liu, Sihan Yang, Yanfeng Gao
{"title":"结合第一性原理计算和机器学习研究钠离子电池ReNiO2/Ti3C2异质结","authors":"Yuanyuan Cui,&nbsp;Chengyu Zhang,&nbsp;Luxin Niu,&nbsp;Jiao Zheng,&nbsp;Xin Liu,&nbsp;Sihan Yang,&nbsp;Yanfeng Gao","doi":"10.1002/apxr.202500052","DOIUrl":null,"url":null,"abstract":"<p>Due to the large size of sodium ions and their slow redox kinetics in electrochemical processes, the sodium ion batteries currently are still far from satisfactory. This study investigates the electrical transport properties of <i>Re</i>NiO<sub>2</sub>/ Ti<sub>3</sub>C<sub>2</sub> heterojunctions in sodium ion batteries through a combination of first principles calculations and machine learning analysis. The <i>Re</i>NiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> heterojunctions exhibit metallic characteristics and enhanced electronic conductivity due to the hybridization of p-d orbitals and the strengthening of Ni─Ti metal bonds. The sodium ion migration energy barrier decreases with increasing rare earth atomic number, facilitating ion transport. Machine learning analysis identifies key factors influencing ion and electron transport rates, including strain, lattice constants, and doping concentration. These findings provide theoretical guidance for designing more efficient negative electrodes for sodium ion batteries.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500052","citationCount":"0","resultStr":"{\"title\":\"Integrating First Principles Calculations and Machine Learning to Study the ReNiO2/Ti3C2 Heterojunctions for Sodium Ion Batteries\",\"authors\":\"Yuanyuan Cui,&nbsp;Chengyu Zhang,&nbsp;Luxin Niu,&nbsp;Jiao Zheng,&nbsp;Xin Liu,&nbsp;Sihan Yang,&nbsp;Yanfeng Gao\",\"doi\":\"10.1002/apxr.202500052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the large size of sodium ions and their slow redox kinetics in electrochemical processes, the sodium ion batteries currently are still far from satisfactory. This study investigates the electrical transport properties of <i>Re</i>NiO<sub>2</sub>/ Ti<sub>3</sub>C<sub>2</sub> heterojunctions in sodium ion batteries through a combination of first principles calculations and machine learning analysis. The <i>Re</i>NiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> heterojunctions exhibit metallic characteristics and enhanced electronic conductivity due to the hybridization of p-d orbitals and the strengthening of Ni─Ti metal bonds. The sodium ion migration energy barrier decreases with increasing rare earth atomic number, facilitating ion transport. Machine learning analysis identifies key factors influencing ion and electron transport rates, including strain, lattice constants, and doping concentration. These findings provide theoretical guidance for designing more efficient negative electrodes for sodium ion batteries.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于钠离子体积大,电化学过程中氧化还原动力学慢,目前钠离子电池的性能还远远不能令人满意。本研究通过第一性原理计算和机器学习分析相结合的方法研究了钠离子电池中ReNiO2/ Ti3C2异质结的电输运性质。由于p-d轨道的杂化和Ni - Ti金属键的强化,ReNiO2/Ti3C2异质结表现出金属特性和电子导电性的增强。随着稀土原子序数的增加,钠离子迁移能垒降低,有利于离子迁移。机器学习分析确定影响离子和电子传输速率的关键因素,包括应变、晶格常数和掺杂浓度。这些发现为设计更高效的钠离子电池负极提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating First Principles Calculations and Machine Learning to Study the ReNiO2/Ti3C2 Heterojunctions for Sodium Ion Batteries

Integrating First Principles Calculations and Machine Learning to Study the ReNiO2/Ti3C2 Heterojunctions for Sodium Ion Batteries

Integrating First Principles Calculations and Machine Learning to Study the ReNiO2/Ti3C2 Heterojunctions for Sodium Ion Batteries

Integrating First Principles Calculations and Machine Learning to Study the ReNiO2/Ti3C2 Heterojunctions for Sodium Ion Batteries

Integrating First Principles Calculations and Machine Learning to Study the ReNiO2/Ti3C2 Heterojunctions for Sodium Ion Batteries

Due to the large size of sodium ions and their slow redox kinetics in electrochemical processes, the sodium ion batteries currently are still far from satisfactory. This study investigates the electrical transport properties of ReNiO2/ Ti3C2 heterojunctions in sodium ion batteries through a combination of first principles calculations and machine learning analysis. The ReNiO2/Ti3C2 heterojunctions exhibit metallic characteristics and enhanced electronic conductivity due to the hybridization of p-d orbitals and the strengthening of Ni─Ti metal bonds. The sodium ion migration energy barrier decreases with increasing rare earth atomic number, facilitating ion transport. Machine learning analysis identifies key factors influencing ion and electron transport rates, including strain, lattice constants, and doping concentration. These findings provide theoretical guidance for designing more efficient negative electrodes for sodium ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信