Heather L. Caslin, Munira Kapadia, Tameka A. Clemons
{"title":"2型糖尿病和阿尔茨海默病的肥大细胞免疫代谢","authors":"Heather L. Caslin, Munira Kapadia, Tameka A. Clemons","doi":"10.1002/jcp.70091","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Type 2 diabetes (T2D) and Alzheimer's Disease (AD) have seemingly different pathologies and symptoms. However, T2D is a risk factor for AD, and recent evidence suggests there are many mechanistic similarities between the etiologies of each disease including inflammation. Mast cells are tissue resident, sentinel immune cells that reside in the pancreas, adipose tissue, and brain, increase in T2D and AD, and have generally been shown to worsen T2D and AD. However, there are limited studies of local or temporal mast cell deletion, and different phenotypic and polarization states seemingly influence the role of mast cells in the progression of disease. As there are metabolic similarities between T2D and AD including insulin resistance and lipid influx into the brain, we discuss the impact of glucose, insulin, amylin, and different lipid species on the activation and polarization of mast cells, which generally reduce IgE-mediated degranulation and promote lipid droplet formation and arachidonic acid metabolism. Altogether, this review provides a framework for understanding a shared mechanism of immunometabolic regulation of T2D and AD and provides rationale for future work in this area.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mast Cell Immunometabolism in Type 2 Diabetes and Alzheimer's Disease\",\"authors\":\"Heather L. Caslin, Munira Kapadia, Tameka A. Clemons\",\"doi\":\"10.1002/jcp.70091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Type 2 diabetes (T2D) and Alzheimer's Disease (AD) have seemingly different pathologies and symptoms. However, T2D is a risk factor for AD, and recent evidence suggests there are many mechanistic similarities between the etiologies of each disease including inflammation. Mast cells are tissue resident, sentinel immune cells that reside in the pancreas, adipose tissue, and brain, increase in T2D and AD, and have generally been shown to worsen T2D and AD. However, there are limited studies of local or temporal mast cell deletion, and different phenotypic and polarization states seemingly influence the role of mast cells in the progression of disease. As there are metabolic similarities between T2D and AD including insulin resistance and lipid influx into the brain, we discuss the impact of glucose, insulin, amylin, and different lipid species on the activation and polarization of mast cells, which generally reduce IgE-mediated degranulation and promote lipid droplet formation and arachidonic acid metabolism. Altogether, this review provides a framework for understanding a shared mechanism of immunometabolic regulation of T2D and AD and provides rationale for future work in this area.</p></div>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70091\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70091","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Mast Cell Immunometabolism in Type 2 Diabetes and Alzheimer's Disease
Type 2 diabetes (T2D) and Alzheimer's Disease (AD) have seemingly different pathologies and symptoms. However, T2D is a risk factor for AD, and recent evidence suggests there are many mechanistic similarities between the etiologies of each disease including inflammation. Mast cells are tissue resident, sentinel immune cells that reside in the pancreas, adipose tissue, and brain, increase in T2D and AD, and have generally been shown to worsen T2D and AD. However, there are limited studies of local or temporal mast cell deletion, and different phenotypic and polarization states seemingly influence the role of mast cells in the progression of disease. As there are metabolic similarities between T2D and AD including insulin resistance and lipid influx into the brain, we discuss the impact of glucose, insulin, amylin, and different lipid species on the activation and polarization of mast cells, which generally reduce IgE-mediated degranulation and promote lipid droplet formation and arachidonic acid metabolism. Altogether, this review provides a framework for understanding a shared mechanism of immunometabolic regulation of T2D and AD and provides rationale for future work in this area.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.