mn掺杂ZnWO4/GO纳米复合粉体光学性能的增强

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Sadegh Azadmehr, Sanaz Alamdari, Majid Jafar Tafreshi
{"title":"mn掺杂ZnWO4/GO纳米复合粉体光学性能的增强","authors":"Sadegh Azadmehr,&nbsp;Sanaz Alamdari,&nbsp;Majid Jafar Tafreshi","doi":"10.1140/epjp/s13360-025-06807-x","DOIUrl":null,"url":null,"abstract":"<div><p>Luminescent materials are indispensable in radiation detection, displays, and biophotonics because they convert high-energy stimuli into visible photons. Here, manganese-doped zinc tungstate/graphene oxide nanocomposite powders (ZnWO₄/GO:Mn) were synthesized via a facile two-step co-precipitation–calcination route. Comprehensive structural, optical, and scintillation characterizations were performed. X-ray diffraction/Rietveld refinement confirmed the monoclinic wolframite ZnWO₄ phase, while SEM/TEM revealed predominantly spherical-to-polyhedral particles with an average diameter of (330 ± 20) nm anchored on partially reduced GO sheets. Energy-dispersive X-ray spectroscopy verified the uniform presence of Zn, W, Mn, C, and O, and FTIR identified characteristic W–O (600–800 cm⁻<sup>1</sup>), C=O (1730 cm⁻<sup>1</sup>), and O–H (3400 cm⁻<sup>1</sup>) vibrations. Photoluminescence under 365-nm excitation showed that Mn<sup>2</sup>⁺ doping boosts the green emission peak at 545 nm, producing ∼40% higher intensity than undoped ZnWO₄/GO, owing to transitions of Mn<sup>2</sup>⁺ centers and improved charge separation through the GO network. Ion-beam-induced luminescence and <sup>241</sup>Am α-particle tests demonstrated a 40% higher photon yield for ZnWO₄/GO:Mn compared with pristine ZnWO₄, highlighting its scintillation potential. Nitrogen adsorption–desorption measurements gave a Type IV–H3 isotherm, indicating slit-like mesoporosity. The nanocomposite exhibits a BET surface area of 0.371 ± 0.02 m<sup>2</sup> g<sup>−1</sup>, a total pore volume of 0.0185 cm<sup>3</sup> g<sup>−1</sup>, and a BJH pore-size maximum at ∼6.6 nm, arising from interlayer voids between GO sheets and ZnWO₄ grains. These synergistic structural and opto-scintillation enhancements position ZnWO₄/GO:Mn nanoparticles as promising candidates for next-generation optoelectronic applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced optical properties of Mn-doped ZnWO4/GO nanocomposite powders\",\"authors\":\"Sadegh Azadmehr,&nbsp;Sanaz Alamdari,&nbsp;Majid Jafar Tafreshi\",\"doi\":\"10.1140/epjp/s13360-025-06807-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Luminescent materials are indispensable in radiation detection, displays, and biophotonics because they convert high-energy stimuli into visible photons. Here, manganese-doped zinc tungstate/graphene oxide nanocomposite powders (ZnWO₄/GO:Mn) were synthesized via a facile two-step co-precipitation–calcination route. Comprehensive structural, optical, and scintillation characterizations were performed. X-ray diffraction/Rietveld refinement confirmed the monoclinic wolframite ZnWO₄ phase, while SEM/TEM revealed predominantly spherical-to-polyhedral particles with an average diameter of (330 ± 20) nm anchored on partially reduced GO sheets. Energy-dispersive X-ray spectroscopy verified the uniform presence of Zn, W, Mn, C, and O, and FTIR identified characteristic W–O (600–800 cm⁻<sup>1</sup>), C=O (1730 cm⁻<sup>1</sup>), and O–H (3400 cm⁻<sup>1</sup>) vibrations. Photoluminescence under 365-nm excitation showed that Mn<sup>2</sup>⁺ doping boosts the green emission peak at 545 nm, producing ∼40% higher intensity than undoped ZnWO₄/GO, owing to transitions of Mn<sup>2</sup>⁺ centers and improved charge separation through the GO network. Ion-beam-induced luminescence and <sup>241</sup>Am α-particle tests demonstrated a 40% higher photon yield for ZnWO₄/GO:Mn compared with pristine ZnWO₄, highlighting its scintillation potential. Nitrogen adsorption–desorption measurements gave a Type IV–H3 isotherm, indicating slit-like mesoporosity. The nanocomposite exhibits a BET surface area of 0.371 ± 0.02 m<sup>2</sup> g<sup>−1</sup>, a total pore volume of 0.0185 cm<sup>3</sup> g<sup>−1</sup>, and a BJH pore-size maximum at ∼6.6 nm, arising from interlayer voids between GO sheets and ZnWO₄ grains. These synergistic structural and opto-scintillation enhancements position ZnWO₄/GO:Mn nanoparticles as promising candidates for next-generation optoelectronic applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06807-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06807-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

发光材料在辐射探测、显示和生物光子学中是不可或缺的,因为它们将高能刺激转化为可见光子。本文采用两步共沉淀法合成了锰掺杂钨酸锌/氧化石墨烯纳米复合粉体(ZnWO₄/GO:Mn)。进行了全面的结构、光学和闪烁表征。x射线衍射/Rietveld细化证实了单斜斜黑钨矿ZnWO₄相,而SEM/TEM显示主要是平均直径为(330±20)nm的球形到多面体颗粒,锚定在部分还原的氧化石墨烯薄片上。能量色散x射线光谱证实了Zn, W, Mn, C和O的均匀存在,FTIR确定了W - O(600-800厘米毒血症),C=O(1730厘米毒血症)和O - h(3400厘米毒血症)的特征。365 nm激发下的光致发光表明,掺杂Mn2⁺在545 nm处增强了绿色发射峰,比未掺杂的ZnWO₄/GO产生的强度高约40%,这是由于Mn2⁺的中心发生了转变,并且通过GO网络改善了电荷分离。离子束诱导发光和241Am α-粒子测试表明,与原始的ZnWO₄相比,ZnWO₄/GO:Mn的光子产率提高了40%,突出了其闪烁潜力。氮气吸附-解吸测量结果为iv型- h3等温线,表明狭缝状介孔。该纳米复合材料的BET表面积为0.371±0.02 m2 g−1,总孔隙体积为0.0185 cm3 g−1,最大BJH孔径为~ 6.6 nm,由氧化石墨烯片和硫酸锌颗粒之间的层间空隙引起。这些协同结构和光闪烁增强使ZnWO₄/GO:Mn纳米颗粒成为下一代光电应用的有希望的候选者。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced optical properties of Mn-doped ZnWO4/GO nanocomposite powders

Luminescent materials are indispensable in radiation detection, displays, and biophotonics because they convert high-energy stimuli into visible photons. Here, manganese-doped zinc tungstate/graphene oxide nanocomposite powders (ZnWO₄/GO:Mn) were synthesized via a facile two-step co-precipitation–calcination route. Comprehensive structural, optical, and scintillation characterizations were performed. X-ray diffraction/Rietveld refinement confirmed the monoclinic wolframite ZnWO₄ phase, while SEM/TEM revealed predominantly spherical-to-polyhedral particles with an average diameter of (330 ± 20) nm anchored on partially reduced GO sheets. Energy-dispersive X-ray spectroscopy verified the uniform presence of Zn, W, Mn, C, and O, and FTIR identified characteristic W–O (600–800 cm⁻1), C=O (1730 cm⁻1), and O–H (3400 cm⁻1) vibrations. Photoluminescence under 365-nm excitation showed that Mn2⁺ doping boosts the green emission peak at 545 nm, producing ∼40% higher intensity than undoped ZnWO₄/GO, owing to transitions of Mn2⁺ centers and improved charge separation through the GO network. Ion-beam-induced luminescence and 241Am α-particle tests demonstrated a 40% higher photon yield for ZnWO₄/GO:Mn compared with pristine ZnWO₄, highlighting its scintillation potential. Nitrogen adsorption–desorption measurements gave a Type IV–H3 isotherm, indicating slit-like mesoporosity. The nanocomposite exhibits a BET surface area of 0.371 ± 0.02 m2 g−1, a total pore volume of 0.0185 cm3 g−1, and a BJH pore-size maximum at ∼6.6 nm, arising from interlayer voids between GO sheets and ZnWO₄ grains. These synergistic structural and opto-scintillation enhancements position ZnWO₄/GO:Mn nanoparticles as promising candidates for next-generation optoelectronic applications.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信