钴掺入提高二氧化锰纳米线对煤烟燃烧的催化性能

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Issara Sereewatthanawut, Chalempol Khajonvittayakul, Notsawan Swadchaipong, Vut Tongnan, Panupun Maneesard, Rossarin Ampairojanawong, Ammarika Makdee, Tawiwan Kangsadan, Matthew Hartley and Unalome Wetwatana Hartley
{"title":"钴掺入提高二氧化锰纳米线对煤烟燃烧的催化性能","authors":"Issara Sereewatthanawut, Chalempol Khajonvittayakul, Notsawan Swadchaipong, Vut Tongnan, Panupun Maneesard, Rossarin Ampairojanawong, Ammarika Makdee, Tawiwan Kangsadan, Matthew Hartley and Unalome Wetwatana Hartley","doi":"10.1039/D5MA00480B","DOIUrl":null,"url":null,"abstract":"<p >The impact of cobalt (Co) doping on the structure, redox, and catalytic properties of MnO<small><sub>2</sub></small> nanowires (NWs) for soot combustion was investigated. XRD analysis revealed that pure MnO<small><sub>2</sub></small> NWs exhibit a mixture of major α-MnO<small><sub>2</sub></small> and minor γ-MnO<small><sub>2</sub></small> phases, while Co doping at 10 mol% enhanced the γ-MnO<small><sub>2</sub></small> content and induced unbalanced charge in the MnO<small><sub>2</sub></small> structure <em>via</em> Mn substitution by Co, which induced lattice defects, including oxygen vacancies. SEM images confirmed the successful formation of nanowire morphology using the hydrothermal method for all prepared catalysts. H<small><sub>2</sub></small>-TPR profiles demonstrated enhanced reducibility and oxygen mobility in Co-doped catalysts, attributed to synergistic effects between Mn and Co species and increased oxygen vacancy concentration. The soot oxidation mechanism suggested that oxygen vacancies and mobility play a key role in sustaining lattice oxygen activation. Catalytic activity tests for soot combustion revealed that 10 mol% Co-doped MnO<small><sub>2</sub></small> NWs achieved the lowest <em>T</em><small><sub>50</sub></small> (363 °C), outperforming both pure MnO<small><sub>2</sub></small> NWs and 20 mol% Co-doped MnO<small><sub>2</sub></small> NWs, due to optimized structural, porosity, and redox properties, and oxygen mobility. Post-reaction investigations demonstrated that the nanowire catalyst might provide sustained catalytic performance over several reaction cycles by converting to catalytically active Mn<small><sub>3</sub></small>O<small><sub>4</sub></small> without morphological degradation.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 18","pages":" 6416-6426"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00480b?page=search","citationCount":"0","resultStr":"{\"title\":\"Enhanced catalytic performance of MnO2 nanowires for soot combustion by cobalt incorporation\",\"authors\":\"Issara Sereewatthanawut, Chalempol Khajonvittayakul, Notsawan Swadchaipong, Vut Tongnan, Panupun Maneesard, Rossarin Ampairojanawong, Ammarika Makdee, Tawiwan Kangsadan, Matthew Hartley and Unalome Wetwatana Hartley\",\"doi\":\"10.1039/D5MA00480B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The impact of cobalt (Co) doping on the structure, redox, and catalytic properties of MnO<small><sub>2</sub></small> nanowires (NWs) for soot combustion was investigated. XRD analysis revealed that pure MnO<small><sub>2</sub></small> NWs exhibit a mixture of major α-MnO<small><sub>2</sub></small> and minor γ-MnO<small><sub>2</sub></small> phases, while Co doping at 10 mol% enhanced the γ-MnO<small><sub>2</sub></small> content and induced unbalanced charge in the MnO<small><sub>2</sub></small> structure <em>via</em> Mn substitution by Co, which induced lattice defects, including oxygen vacancies. SEM images confirmed the successful formation of nanowire morphology using the hydrothermal method for all prepared catalysts. H<small><sub>2</sub></small>-TPR profiles demonstrated enhanced reducibility and oxygen mobility in Co-doped catalysts, attributed to synergistic effects between Mn and Co species and increased oxygen vacancy concentration. The soot oxidation mechanism suggested that oxygen vacancies and mobility play a key role in sustaining lattice oxygen activation. Catalytic activity tests for soot combustion revealed that 10 mol% Co-doped MnO<small><sub>2</sub></small> NWs achieved the lowest <em>T</em><small><sub>50</sub></small> (363 °C), outperforming both pure MnO<small><sub>2</sub></small> NWs and 20 mol% Co-doped MnO<small><sub>2</sub></small> NWs, due to optimized structural, porosity, and redox properties, and oxygen mobility. Post-reaction investigations demonstrated that the nanowire catalyst might provide sustained catalytic performance over several reaction cycles by converting to catalytically active Mn<small><sub>3</sub></small>O<small><sub>4</sub></small> without morphological degradation.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 18\",\"pages\":\" 6416-6426\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00480b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00480b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00480b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了钴(Co)掺杂对二氧化锰纳米线(NWs)结构、氧化还原和烟尘燃烧催化性能的影响。XRD分析表明,纯MnO2 NWs主要由α-MnO2相和γ-MnO2相组成,而10 mol%的Co掺杂使MnO2结构中γ-MnO2的含量增加,并通过Mn被Co取代导致MnO2结构中电荷不平衡,从而导致晶格缺陷,包括氧空位。SEM图像证实了水热法制备的所有催化剂均成功形成纳米线形态。H2-TPR谱图表明,共掺杂催化剂的还原性和氧迁移率增强,这是由于Mn和Co之间的协同作用和氧空位浓度的增加。烟灰氧化机理表明,氧空位和迁移率在维持晶格氧活化中起关键作用。烟尘燃烧的催化活性测试表明,10 mol% co掺杂MnO2 NWs的T50最低(363°C),优于纯MnO2 NWs和20 mol% co掺杂MnO2 NWs,这是由于优化的结构、孔隙度、氧化还原性能和氧迁移性。反应后的研究表明,纳米线催化剂可以在几个反应循环中转化为具有催化活性的Mn3O4而不发生形态降解,从而提供持续的催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced catalytic performance of MnO2 nanowires for soot combustion by cobalt incorporation

Enhanced catalytic performance of MnO2 nanowires for soot combustion by cobalt incorporation

The impact of cobalt (Co) doping on the structure, redox, and catalytic properties of MnO2 nanowires (NWs) for soot combustion was investigated. XRD analysis revealed that pure MnO2 NWs exhibit a mixture of major α-MnO2 and minor γ-MnO2 phases, while Co doping at 10 mol% enhanced the γ-MnO2 content and induced unbalanced charge in the MnO2 structure via Mn substitution by Co, which induced lattice defects, including oxygen vacancies. SEM images confirmed the successful formation of nanowire morphology using the hydrothermal method for all prepared catalysts. H2-TPR profiles demonstrated enhanced reducibility and oxygen mobility in Co-doped catalysts, attributed to synergistic effects between Mn and Co species and increased oxygen vacancy concentration. The soot oxidation mechanism suggested that oxygen vacancies and mobility play a key role in sustaining lattice oxygen activation. Catalytic activity tests for soot combustion revealed that 10 mol% Co-doped MnO2 NWs achieved the lowest T50 (363 °C), outperforming both pure MnO2 NWs and 20 mol% Co-doped MnO2 NWs, due to optimized structural, porosity, and redox properties, and oxygen mobility. Post-reaction investigations demonstrated that the nanowire catalyst might provide sustained catalytic performance over several reaction cycles by converting to catalytically active Mn3O4 without morphological degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信