冷烧结TiO2-Ti3C2Tx MXene纳米复合材料用于超级电容器电极材料†

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abdul Hamid Rumman, Saimon Mahmud, Nishat Tasnim Mim, Janifa Akter, Ananya Roy, Ahsiur Rahman Nirjhar, Md. Nazmul Ahsan Dipon, Md. Shofiqul Islam, Md Abdul Gafur, Aninda Nafis Ahmed and Kazi Md. Shorowordi
{"title":"冷烧结TiO2-Ti3C2Tx MXene纳米复合材料用于超级电容器电极材料†","authors":"Abdul Hamid Rumman, Saimon Mahmud, Nishat Tasnim Mim, Janifa Akter, Ananya Roy, Ahsiur Rahman Nirjhar, Md. Nazmul Ahsan Dipon, Md. Shofiqul Islam, Md Abdul Gafur, Aninda Nafis Ahmed and Kazi Md. Shorowordi","doi":"10.1039/D4MA01212G","DOIUrl":null,"url":null,"abstract":"<p >MXene-based materials exhibit unique electrochemical properties due to their 2D layered structure with high surface areas, making them ideal candidates for electrode materials in advanced electrochemical energy storage systems. The capacitive properties of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXenes (T<small><sub><em>x</em></sub></small> denotes the surface terminator group, such as –F, –OH, and <img>O) can be enhanced by decorating surface layers with transition metal oxides, such as TiO<small><sub>2</sub></small>. Conventional <em>in situ</em> synthesis methods lack precise control over the TiO<small><sub>2</sub></small> content within the MXene structure. In this study, a contemporary cold sintering process (CSP) was employed to fabricate the TiO<small><sub>2</sub></small>–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> nanocomposite, enabling a controlled amount of TiO<small><sub>2</sub></small> particle addition into the MXene matrix. Consequently, it provided a means to correlate the electrochemical performance of the nanocomposites with the TiO<small><sub>2</sub></small> content. Through the CSP, the nanocomposites were fabricated at low temperature (150 °C) and pressure (150 MPa) assisted by a transient liquid, achieving high relative density (&gt;85%). The electrochemical performance analysis revealed an increase in specific capacitance with increasing TiO<small><sub>2</sub></small> content, reaching up to 117 F g<small><sup>−1</sup></small> for (40 wt%) TiO<small><sub>2</sub></small>/MXene at a 10 mV s<small><sup>−1</sup></small> scan rate surpassing that of the pristine MXene (55.29 F g<small><sup>−1</sup></small>). Additionally, the charge transfer resistance substantially declined from 4.01 Ω cm<small><sup>2</sup></small> for the pristine MXene to as low as 0.51 Ω cm<small><sup>2</sup></small> for (40 wt%) TiO<small><sub>2</sub></small>/MXene. Surprisingly, the nanocomposite samples demonstrated more than a 200% increase in the specific capacitance after 1000 charging–discharging cycles at 1.5 A g<small><sup>−1</sup></small>, attributed to the ion intercalation and surface terminator group (T<small><sub><em>x</em></sub></small>) alteration in MXenes. Overall, this study highlights the application of the CSP as a valuable tool for precisely tailoring the electrochemical properties of TiO<small><sub>2</sub></small>–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene nanocomposites.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 18","pages":" 6454-6468"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01212g?page=search","citationCount":"0","resultStr":"{\"title\":\"Cold sintered TiO2–Ti3C2Tx MXene nanocomposites for supercapacitor electrode materials†\",\"authors\":\"Abdul Hamid Rumman, Saimon Mahmud, Nishat Tasnim Mim, Janifa Akter, Ananya Roy, Ahsiur Rahman Nirjhar, Md. Nazmul Ahsan Dipon, Md. Shofiqul Islam, Md Abdul Gafur, Aninda Nafis Ahmed and Kazi Md. Shorowordi\",\"doi\":\"10.1039/D4MA01212G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >MXene-based materials exhibit unique electrochemical properties due to their 2D layered structure with high surface areas, making them ideal candidates for electrode materials in advanced electrochemical energy storage systems. The capacitive properties of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXenes (T<small><sub><em>x</em></sub></small> denotes the surface terminator group, such as –F, –OH, and <img>O) can be enhanced by decorating surface layers with transition metal oxides, such as TiO<small><sub>2</sub></small>. Conventional <em>in situ</em> synthesis methods lack precise control over the TiO<small><sub>2</sub></small> content within the MXene structure. In this study, a contemporary cold sintering process (CSP) was employed to fabricate the TiO<small><sub>2</sub></small>–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> nanocomposite, enabling a controlled amount of TiO<small><sub>2</sub></small> particle addition into the MXene matrix. Consequently, it provided a means to correlate the electrochemical performance of the nanocomposites with the TiO<small><sub>2</sub></small> content. Through the CSP, the nanocomposites were fabricated at low temperature (150 °C) and pressure (150 MPa) assisted by a transient liquid, achieving high relative density (&gt;85%). The electrochemical performance analysis revealed an increase in specific capacitance with increasing TiO<small><sub>2</sub></small> content, reaching up to 117 F g<small><sup>−1</sup></small> for (40 wt%) TiO<small><sub>2</sub></small>/MXene at a 10 mV s<small><sup>−1</sup></small> scan rate surpassing that of the pristine MXene (55.29 F g<small><sup>−1</sup></small>). Additionally, the charge transfer resistance substantially declined from 4.01 Ω cm<small><sup>2</sup></small> for the pristine MXene to as low as 0.51 Ω cm<small><sup>2</sup></small> for (40 wt%) TiO<small><sub>2</sub></small>/MXene. Surprisingly, the nanocomposite samples demonstrated more than a 200% increase in the specific capacitance after 1000 charging–discharging cycles at 1.5 A g<small><sup>−1</sup></small>, attributed to the ion intercalation and surface terminator group (T<small><sub><em>x</em></sub></small>) alteration in MXenes. Overall, this study highlights the application of the CSP as a valuable tool for precisely tailoring the electrochemical properties of TiO<small><sub>2</sub></small>–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene nanocomposites.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 18\",\"pages\":\" 6454-6468\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01212g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01212g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01212g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于mxene的材料由于其具有高表面积的二维层状结构而表现出独特的电化学性能,使其成为先进电化学储能系统中电极材料的理想候选者。Ti3C2Tx MXenes (Tx表示表面终止基团,如-F、-OH和- O)的电容性可以通过在表面表面添加过渡金属氧化物(如TiO2)来增强。传统的原位合成方法缺乏对MXene结构中TiO2含量的精确控制。在本研究中,采用现代冷烧结工艺(CSP)制备TiO2 - ti3c2tx纳米复合材料,实现了在MXene基体中添加一定量的TiO2颗粒。因此,它提供了一种将纳米复合材料的电化学性能与TiO2含量相关联的方法。通过CSP,在低温(150℃)和高压(150 MPa)下,在瞬态液体的辅助下制备纳米复合材料,获得了较高的相对密度(>85%)。电化学性能分析表明,随着TiO2含量的增加,TiO2/MXene的比电容增加,在10 mV s−1的扫描速率下,(40 wt%) TiO2/MXene的比电容达到117 F g−1,超过了原始MXene的比电容(55.29 F g−1)。此外,电荷转移电阻从原始MXene的4.01 Ω cm2大幅下降到(40% wt%) TiO2/MXene的0.51 Ω cm2。令人惊讶的是,经过1000次1.5 a g−1的充放电循环后,纳米复合材料样品的比电容增加了200%以上,这是由于MXenes中的离子插入和表面终止基团(Tx)的改变。总的来说,本研究突出了CSP作为精确定制TiO2-Ti3C2Tx MXene纳米复合材料电化学性能的有价值工具的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cold sintered TiO2–Ti3C2Tx MXene nanocomposites for supercapacitor electrode materials†

Cold sintered TiO2–Ti3C2Tx MXene nanocomposites for supercapacitor electrode materials†

MXene-based materials exhibit unique electrochemical properties due to their 2D layered structure with high surface areas, making them ideal candidates for electrode materials in advanced electrochemical energy storage systems. The capacitive properties of Ti3C2Tx MXenes (Tx denotes the surface terminator group, such as –F, –OH, and O) can be enhanced by decorating surface layers with transition metal oxides, such as TiO2. Conventional in situ synthesis methods lack precise control over the TiO2 content within the MXene structure. In this study, a contemporary cold sintering process (CSP) was employed to fabricate the TiO2–Ti3C2Tx nanocomposite, enabling a controlled amount of TiO2 particle addition into the MXene matrix. Consequently, it provided a means to correlate the electrochemical performance of the nanocomposites with the TiO2 content. Through the CSP, the nanocomposites were fabricated at low temperature (150 °C) and pressure (150 MPa) assisted by a transient liquid, achieving high relative density (>85%). The electrochemical performance analysis revealed an increase in specific capacitance with increasing TiO2 content, reaching up to 117 F g−1 for (40 wt%) TiO2/MXene at a 10 mV s−1 scan rate surpassing that of the pristine MXene (55.29 F g−1). Additionally, the charge transfer resistance substantially declined from 4.01 Ω cm2 for the pristine MXene to as low as 0.51 Ω cm2 for (40 wt%) TiO2/MXene. Surprisingly, the nanocomposite samples demonstrated more than a 200% increase in the specific capacitance after 1000 charging–discharging cycles at 1.5 A g−1, attributed to the ion intercalation and surface terminator group (Tx) alteration in MXenes. Overall, this study highlights the application of the CSP as a valuable tool for precisely tailoring the electrochemical properties of TiO2–Ti3C2Tx MXene nanocomposites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信