CTrans-SegDiff:基于ctransform的超声图像分割扩散模型

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuzhu Cao;Jizhao Liu;Liping Wang;Jing Lian
{"title":"CTrans-SegDiff:基于ctransform的超声图像分割扩散模型","authors":"Yuzhu Cao;Jizhao Liu;Liping Wang;Jing Lian","doi":"10.1109/LSP.2025.3601987","DOIUrl":null,"url":null,"abstract":"Deep generative models, particularly diffusion probabilistic models, have recently shown promise in medical ultrasound image segmentation due to their powerful denoising and detail restoration capabilities. However, most existing generative models focus primarily on image enhancement, with limited consideration for segmentation-specific challenges. To address this, we propose CTrans-SegDiff, a novel segmentation framework that integrates a denoising diffusion probabilistic model with a Transformer-enhanced dynamic conditioning mechanism. Specifically, we design a dual-channel dynamic conditioning module to jointly capture lesion-specific semantics and global contextual dependencies, and a Gaussian Distribution Fusion Module (GDFM) to harmonize the fusion of conditioning features with diffusion-encoded representations. Extensive experiments on two ultrasound datasets demonstrate that our method effectively suppresses noise, enhances structural clarity, and achieves superior segmentation performance compared to existing approaches.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3505-3509"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CTrans-SegDiff: CTransfomer-Based Diffusion Model for Ultrasound Image Segmentation\",\"authors\":\"Yuzhu Cao;Jizhao Liu;Liping Wang;Jing Lian\",\"doi\":\"10.1109/LSP.2025.3601987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep generative models, particularly diffusion probabilistic models, have recently shown promise in medical ultrasound image segmentation due to their powerful denoising and detail restoration capabilities. However, most existing generative models focus primarily on image enhancement, with limited consideration for segmentation-specific challenges. To address this, we propose CTrans-SegDiff, a novel segmentation framework that integrates a denoising diffusion probabilistic model with a Transformer-enhanced dynamic conditioning mechanism. Specifically, we design a dual-channel dynamic conditioning module to jointly capture lesion-specific semantics and global contextual dependencies, and a Gaussian Distribution Fusion Module (GDFM) to harmonize the fusion of conditioning features with diffusion-encoded representations. Extensive experiments on two ultrasound datasets demonstrate that our method effectively suppresses noise, enhances structural clarity, and achieves superior segmentation performance compared to existing approaches.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3505-3509\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11134565/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11134565/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

深度生成模型,特别是扩散概率模型,由于其强大的去噪和细节恢复能力,最近在医学超声图像分割中显示出前景。然而,大多数现有的生成模型主要集中在图像增强上,很少考虑特定于分割的挑战。为了解决这个问题,我们提出了一种新的分割框架CTrans-SegDiff,它将去噪扩散概率模型与变压器增强的动态调节机制集成在一起。具体来说,我们设计了一个双通道动态调理模块来共同捕获病变特定语义和全局上下文依赖关系,以及一个高斯分布融合模块(GDFM)来协调调理特征与扩散编码表示的融合。在两个超声数据集上的大量实验表明,与现有方法相比,我们的方法有效地抑制了噪声,提高了结构清晰度,并取得了更好的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CTrans-SegDiff: CTransfomer-Based Diffusion Model for Ultrasound Image Segmentation
Deep generative models, particularly diffusion probabilistic models, have recently shown promise in medical ultrasound image segmentation due to their powerful denoising and detail restoration capabilities. However, most existing generative models focus primarily on image enhancement, with limited consideration for segmentation-specific challenges. To address this, we propose CTrans-SegDiff, a novel segmentation framework that integrates a denoising diffusion probabilistic model with a Transformer-enhanced dynamic conditioning mechanism. Specifically, we design a dual-channel dynamic conditioning module to jointly capture lesion-specific semantics and global contextual dependencies, and a Gaussian Distribution Fusion Module (GDFM) to harmonize the fusion of conditioning features with diffusion-encoded representations. Extensive experiments on two ultrasound datasets demonstrate that our method effectively suppresses noise, enhances structural clarity, and achieves superior segmentation performance compared to existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信