协同机器学习和DFT筛选策略:加速发现高效钙钛矿钝化剂

IF 14.9 1区 化学 Q1 Energy
Jianghao Liu, Hongyan Lv, Pengyang Wang, Guofu Hou, Ying Zhao, Xiaodan Zhang, Qian Huang
{"title":"协同机器学习和DFT筛选策略:加速发现高效钙钛矿钝化剂","authors":"Jianghao Liu,&nbsp;Hongyan Lv,&nbsp;Pengyang Wang,&nbsp;Guofu Hou,&nbsp;Ying Zhao,&nbsp;Xiaodan Zhang,&nbsp;Qian Huang","doi":"10.1016/j.jechem.2025.08.036","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient surface passivation is critical for achieving high-performance perovskite solar cells (PSCs), yet the discovery of optimal passivators remains a time-consuming, trial-and-error process. Here, we report a synergistic machine learning (ML) and density functional theory (DFT) approach that enables predictive and rapid identification of effective passivation materials. By training an XGBoost model (91.3 % accuracy) with DFT-derived molecular descriptors and activity calculations, we identify 2-(4-aminophenyl)-3H-benzimidazol-5-amine (APBIA) as a promising passivator. Experimental validation demonstrates that APBIA effectively removes surface impurities and passivates defects within perovskite films, leading to a significant increase in power conversion efficiency (PCE) from 22.48 % to 25.55 % (certified as 25.02 %). This ML-DFT framework provides a generalizable pathway for accelerating the development of advanced functional materials for photovoltaic applications.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"112 ","pages":"Pages 56-63"},"PeriodicalIF":14.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic machine learning and DFT screening strategy: Accelerating discovery of efficient perovskite passivators\",\"authors\":\"Jianghao Liu,&nbsp;Hongyan Lv,&nbsp;Pengyang Wang,&nbsp;Guofu Hou,&nbsp;Ying Zhao,&nbsp;Xiaodan Zhang,&nbsp;Qian Huang\",\"doi\":\"10.1016/j.jechem.2025.08.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient surface passivation is critical for achieving high-performance perovskite solar cells (PSCs), yet the discovery of optimal passivators remains a time-consuming, trial-and-error process. Here, we report a synergistic machine learning (ML) and density functional theory (DFT) approach that enables predictive and rapid identification of effective passivation materials. By training an XGBoost model (91.3 % accuracy) with DFT-derived molecular descriptors and activity calculations, we identify 2-(4-aminophenyl)-3H-benzimidazol-5-amine (APBIA) as a promising passivator. Experimental validation demonstrates that APBIA effectively removes surface impurities and passivates defects within perovskite films, leading to a significant increase in power conversion efficiency (PCE) from 22.48 % to 25.55 % (certified as 25.02 %). This ML-DFT framework provides a generalizable pathway for accelerating the development of advanced functional materials for photovoltaic applications.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"112 \",\"pages\":\"Pages 56-63\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495625006941\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625006941","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

高效的表面钝化是实现高性能钙钛矿太阳能电池(PSCs)的关键,但最佳钝化剂的发现仍然是一个耗时、反复试验的过程。在这里,我们报告了一种协同机器学习(ML)和密度泛函理论(DFT)方法,可以预测和快速识别有效的钝化材料。通过使用dft衍生的分子描述符和活度计算训练XGBoost模型(准确率为91.3%),我们确定2-(4-氨基苯基)- 3h -苯并咪唑-5-胺(APBIA)是一种很有前景的钝化剂。实验验证表明,APBIA能有效去除钙钛矿薄膜表面杂质,钝化钙钛矿薄膜内部缺陷,使功率转换效率(PCE)从22.48%显著提高到25.55%(认证为25.02%)。这个ML-DFT框架为加速光伏应用的先进功能材料的开发提供了一个可推广的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic machine learning and DFT screening strategy: Accelerating discovery of efficient perovskite passivators

Synergistic machine learning and DFT screening strategy: Accelerating discovery of efficient perovskite passivators
Efficient surface passivation is critical for achieving high-performance perovskite solar cells (PSCs), yet the discovery of optimal passivators remains a time-consuming, trial-and-error process. Here, we report a synergistic machine learning (ML) and density functional theory (DFT) approach that enables predictive and rapid identification of effective passivation materials. By training an XGBoost model (91.3 % accuracy) with DFT-derived molecular descriptors and activity calculations, we identify 2-(4-aminophenyl)-3H-benzimidazol-5-amine (APBIA) as a promising passivator. Experimental validation demonstrates that APBIA effectively removes surface impurities and passivates defects within perovskite films, leading to a significant increase in power conversion efficiency (PCE) from 22.48 % to 25.55 % (certified as 25.02 %). This ML-DFT framework provides a generalizable pathway for accelerating the development of advanced functional materials for photovoltaic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信