利用光屏蔽交联剂实现量子点的超高分辨率无损光刻

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chang Gu , Zhixin Zhai , Wenxuan Wang , Hao Tan , Shuo Ding , Junpeng Fan , Lei Qian , Ting Zhang , Chaoyu Xiang
{"title":"利用光屏蔽交联剂实现量子点的超高分辨率无损光刻","authors":"Chang Gu ,&nbsp;Zhixin Zhai ,&nbsp;Wenxuan Wang ,&nbsp;Hao Tan ,&nbsp;Shuo Ding ,&nbsp;Junpeng Fan ,&nbsp;Lei Qian ,&nbsp;Ting Zhang ,&nbsp;Chaoyu Xiang","doi":"10.1016/j.mattod.2025.07.025","DOIUrl":null,"url":null,"abstract":"<div><div>Direct photolithography of colloidal quantum dots (QDs) has emerged as a pivotal technology for next-generation optoelectronics due to its exceptional patterning potential and broad material compatibility. While short-wavelength ultraviolet (e.g., deep ultraviolet [DUV]) is critical for minimizing diffraction effects, it induces severe photo-damage to QDs and undesirable side reactions. To date, no existing strategy has successfully addressed the incompatibility between QDs and DUV to achieve submicron-scale patterning while preserving optoelectronic properties. Here, we develop a photo-shield photolithography strategy implemented through rationally designed acetophenone-based crosslinkers, which enables efficient DUV shield to QDs and precise photo-crosslinking. Based on this strategy, a record-breaking spatial resolution (&gt;18000 PPI, pixel size ≈ 0.55 μm) is demonstrated with fully maintained QD structure and photoluminescent properties. The fabricated light-emitting diode prototype achieves a record peak external quantum efficiency of ∼ 20.3 %. This strategy decouples resolution scaling from material damage, establishing the first nondestructive DUV photolithography framework of QDs, and creating new opportunities for QD-based ultra-high-resolution information displays and other optoelectronic platforms.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"89 ","pages":"Pages 100-106"},"PeriodicalIF":22.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-high-resolution nondestructive photolithography of quantum dots enabled by photo-shield crosslinker\",\"authors\":\"Chang Gu ,&nbsp;Zhixin Zhai ,&nbsp;Wenxuan Wang ,&nbsp;Hao Tan ,&nbsp;Shuo Ding ,&nbsp;Junpeng Fan ,&nbsp;Lei Qian ,&nbsp;Ting Zhang ,&nbsp;Chaoyu Xiang\",\"doi\":\"10.1016/j.mattod.2025.07.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Direct photolithography of colloidal quantum dots (QDs) has emerged as a pivotal technology for next-generation optoelectronics due to its exceptional patterning potential and broad material compatibility. While short-wavelength ultraviolet (e.g., deep ultraviolet [DUV]) is critical for minimizing diffraction effects, it induces severe photo-damage to QDs and undesirable side reactions. To date, no existing strategy has successfully addressed the incompatibility between QDs and DUV to achieve submicron-scale patterning while preserving optoelectronic properties. Here, we develop a photo-shield photolithography strategy implemented through rationally designed acetophenone-based crosslinkers, which enables efficient DUV shield to QDs and precise photo-crosslinking. Based on this strategy, a record-breaking spatial resolution (&gt;18000 PPI, pixel size ≈ 0.55 μm) is demonstrated with fully maintained QD structure and photoluminescent properties. The fabricated light-emitting diode prototype achieves a record peak external quantum efficiency of ∼ 20.3 %. This strategy decouples resolution scaling from material damage, establishing the first nondestructive DUV photolithography framework of QDs, and creating new opportunities for QD-based ultra-high-resolution information displays and other optoelectronic platforms.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"89 \",\"pages\":\"Pages 100-106\"},\"PeriodicalIF\":22.0000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702125003116\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125003116","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

胶体量子点(QDs)的直接光刻技术由于其独特的模式潜力和广泛的材料兼容性而成为下一代光电子技术的关键技术。虽然短波紫外线(如深紫外[DUV])对于最小化衍射效应至关重要,但它会对量子点造成严重的光损伤和不良的副反应。迄今为止,没有现有的策略成功地解决了量子点和DUV之间的不兼容性,以实现亚微米尺度的图案,同时保持光电特性。在这里,我们开发了一种通过合理设计苯乙酮基交联剂实现的光屏蔽光刻策略,该策略可以实现对量子点的有效DUV屏蔽和精确的光交联。基于这一策略,在完全保持量子点结构和光致发光特性的情况下,展示了破纪录的空间分辨率(>18000 PPI,像素尺寸≈0.55 μm)。制造的发光二极管原型实现了创纪录的峰值外量子效率~ 20.3%。该策略将分辨率缩放与材料损伤解耦,建立了第一个无损的量子点DUV光刻框架,并为基于量子点的超高分辨率信息显示和其他光电平台创造了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultra-high-resolution nondestructive photolithography of quantum dots enabled by photo-shield crosslinker

Ultra-high-resolution nondestructive photolithography of quantum dots enabled by photo-shield crosslinker
Direct photolithography of colloidal quantum dots (QDs) has emerged as a pivotal technology for next-generation optoelectronics due to its exceptional patterning potential and broad material compatibility. While short-wavelength ultraviolet (e.g., deep ultraviolet [DUV]) is critical for minimizing diffraction effects, it induces severe photo-damage to QDs and undesirable side reactions. To date, no existing strategy has successfully addressed the incompatibility between QDs and DUV to achieve submicron-scale patterning while preserving optoelectronic properties. Here, we develop a photo-shield photolithography strategy implemented through rationally designed acetophenone-based crosslinkers, which enables efficient DUV shield to QDs and precise photo-crosslinking. Based on this strategy, a record-breaking spatial resolution (>18000 PPI, pixel size ≈ 0.55 μm) is demonstrated with fully maintained QD structure and photoluminescent properties. The fabricated light-emitting diode prototype achieves a record peak external quantum efficiency of ∼ 20.3 %. This strategy decouples resolution scaling from material damage, establishing the first nondestructive DUV photolithography framework of QDs, and creating new opportunities for QD-based ultra-high-resolution information displays and other optoelectronic platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信