用于高能和耐用钠离子电池的o3型阴极表面的层-岩盐原子重构

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mengting Liu , Zhao-Kun Guan , Lu Zheng , Panpan Jing , Si-Fan Chen , Shao-Wen Xu , Ling-Jiao Hu , Xin Liu , Lingfei Zhao , Bing Xiao , Peng-Fei Wang
{"title":"用于高能和耐用钠离子电池的o3型阴极表面的层-岩盐原子重构","authors":"Mengting Liu ,&nbsp;Zhao-Kun Guan ,&nbsp;Lu Zheng ,&nbsp;Panpan Jing ,&nbsp;Si-Fan Chen ,&nbsp;Shao-Wen Xu ,&nbsp;Ling-Jiao Hu ,&nbsp;Xin Liu ,&nbsp;Lingfei Zhao ,&nbsp;Bing Xiao ,&nbsp;Peng-Fei Wang","doi":"10.1016/j.mattod.2025.08.013","DOIUrl":null,"url":null,"abstract":"<div><div>High-energy O3-type cathode materials have been intensively pursued due to the immense potential of sodium-ion batteries as a scalable and economic energy storage solution. However, their intrinsic sensitivity of surface to humid air inevitably triggers detrimental bulk degradation and the formation of ionically/electronically insulating surface residuals, severely impairing their battery performance and commercialization efforts. Here, we present a transformative layered-to-rocksalt atomic reconfiguration strategy that achieves dual breakthroughs, the elimination of residual alkalis and the <em>in-situ</em> construction of a robust layered-rocksalt heterostructure surface in the prototypical O3-NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> cathode. This ingenious design defies conventional trade-offs, simultaneously preserving rapid Na<sup>+</sup> diffusion kinetics, ensuring exceptional electrochemical reversibility and reinforcing structural stability. Consequently, the engineered cathode demonstrates a superior initial Coulombic efficiency of 97.6 %, a high cycling durability with capacity retention of 80.1 % after 300 cycles at 1 C and a new benchmark for rate capability with 78.9 % capacity retention at a high rate of 10 C. The proposed surface layered-to-rocksalt atomic reconfiguration strategy exemplifies a groundbreaking electrode design concept and opens up a wide of compositional possibilities for future development of high-power and high-energy cathodes, marking a significant step forward in the evolution of sodium-ion battery technology.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"89 ","pages":"Pages 35-43"},"PeriodicalIF":22.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered-to-rocksalt atomic reconfiguration on O3-type cathodes surface for high-energy and durable sodium-ion batteries\",\"authors\":\"Mengting Liu ,&nbsp;Zhao-Kun Guan ,&nbsp;Lu Zheng ,&nbsp;Panpan Jing ,&nbsp;Si-Fan Chen ,&nbsp;Shao-Wen Xu ,&nbsp;Ling-Jiao Hu ,&nbsp;Xin Liu ,&nbsp;Lingfei Zhao ,&nbsp;Bing Xiao ,&nbsp;Peng-Fei Wang\",\"doi\":\"10.1016/j.mattod.2025.08.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-energy O3-type cathode materials have been intensively pursued due to the immense potential of sodium-ion batteries as a scalable and economic energy storage solution. However, their intrinsic sensitivity of surface to humid air inevitably triggers detrimental bulk degradation and the formation of ionically/electronically insulating surface residuals, severely impairing their battery performance and commercialization efforts. Here, we present a transformative layered-to-rocksalt atomic reconfiguration strategy that achieves dual breakthroughs, the elimination of residual alkalis and the <em>in-situ</em> construction of a robust layered-rocksalt heterostructure surface in the prototypical O3-NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> cathode. This ingenious design defies conventional trade-offs, simultaneously preserving rapid Na<sup>+</sup> diffusion kinetics, ensuring exceptional electrochemical reversibility and reinforcing structural stability. Consequently, the engineered cathode demonstrates a superior initial Coulombic efficiency of 97.6 %, a high cycling durability with capacity retention of 80.1 % after 300 cycles at 1 C and a new benchmark for rate capability with 78.9 % capacity retention at a high rate of 10 C. The proposed surface layered-to-rocksalt atomic reconfiguration strategy exemplifies a groundbreaking electrode design concept and opens up a wide of compositional possibilities for future development of high-power and high-energy cathodes, marking a significant step forward in the evolution of sodium-ion battery technology.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"89 \",\"pages\":\"Pages 35-43\"},\"PeriodicalIF\":22.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702125003505\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125003505","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于钠离子电池作为一种可扩展和经济的储能解决方案的巨大潜力,高能o3型正极材料已经得到了广泛的研究。然而,其表面对潮湿空气的固有敏感性不可避免地会引发有害的体积降解和离子/电子绝缘表面残留物的形成,严重损害其电池性能和商业化努力。在这里,我们提出了一种变革性的层状岩盐原子重构策略,该策略实现了双重突破,即在原型O3-NaNi1/3Fe1/3Mn1/3O2阴极中消除残余碱和原位构建坚固的层状岩盐异质结构表面。这种巧妙的设计打破了传统的权衡,同时保持了快速的Na+扩散动力学,确保了卓越的电化学可逆性和增强结构稳定性。结果表明,该阴极的初始库仑效率为97.6%。高循环耐久性,在1℃下循环300次后容量保留率为80.1%,在10℃下的高速率下容量保留率为78.9%。提出的表面层到岩盐原子重构策略体现了突破性的电极设计概念,为未来开发高功率和高能阴极开辟了广泛的成分可能性。这标志着钠离子电池技术向前迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Layered-to-rocksalt atomic reconfiguration on O3-type cathodes surface for high-energy and durable sodium-ion batteries

Layered-to-rocksalt atomic reconfiguration on O3-type cathodes surface for high-energy and durable sodium-ion batteries
High-energy O3-type cathode materials have been intensively pursued due to the immense potential of sodium-ion batteries as a scalable and economic energy storage solution. However, their intrinsic sensitivity of surface to humid air inevitably triggers detrimental bulk degradation and the formation of ionically/electronically insulating surface residuals, severely impairing their battery performance and commercialization efforts. Here, we present a transformative layered-to-rocksalt atomic reconfiguration strategy that achieves dual breakthroughs, the elimination of residual alkalis and the in-situ construction of a robust layered-rocksalt heterostructure surface in the prototypical O3-NaNi1/3Fe1/3Mn1/3O2 cathode. This ingenious design defies conventional trade-offs, simultaneously preserving rapid Na+ diffusion kinetics, ensuring exceptional electrochemical reversibility and reinforcing structural stability. Consequently, the engineered cathode demonstrates a superior initial Coulombic efficiency of 97.6 %, a high cycling durability with capacity retention of 80.1 % after 300 cycles at 1 C and a new benchmark for rate capability with 78.9 % capacity retention at a high rate of 10 C. The proposed surface layered-to-rocksalt atomic reconfiguration strategy exemplifies a groundbreaking electrode design concept and opens up a wide of compositional possibilities for future development of high-power and high-energy cathodes, marking a significant step forward in the evolution of sodium-ion battery technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信