Evin Gultepe, Raghnya Valluru, Nik Bear Brown, Srinivas Sridhar
{"title":"纳米医学临床试验的前景","authors":"Evin Gultepe, Raghnya Valluru, Nik Bear Brown, Srinivas Sridhar","doi":"10.1016/j.nantod.2025.102898","DOIUrl":null,"url":null,"abstract":"<div><div>Nanotechnology has transformed healthcare, leading to the clinical adoption of numerous nanomedical products. To evaluate their clinical translation, we analyzed all trials registered on ClinicalTrials.gov using a novel nanomedicine lexicon developed through expert curation and generative AI. This approach identified 4114 nanomedical clinical trials (out of more than 500,000) forming the Nanomedical Clinical Trials (NanoCT) dataset. Our analysis reveals a 38 % rise in nanomedical trials in recent years. While oncology remains dominant (30 %), emerging applications—particularly in infectious diseases, driven by the rise of mRNA vaccines—demonstrate the field’s expanding therapeutic scope. This diversification is further evidenced by the growing use of micelles, polymeric, and metallic nanoparticles, marking a shift from the dominance of liposomal formulations. Despite significant advancements, nanomedical trials account for only 0.8 % of all registered clinical trials, highlighting key translational challenges such as regulatory complexities, high production costs, and clinical design limitations. Addressing these barriers requires the establishment of a universally accepted nanomedical lexicon to enhance data harmonization, streamline regulatory pathways, and improve interdisciplinary communication. This comprehensive analysis provides critical insights into the trajectory of nanohealth, identifies obstacles to clinical translation, and outlines strategies to maximize its future impact in medicine.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"66 ","pages":"Article 102898"},"PeriodicalIF":10.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The landscape of nanomedical clinical trials\",\"authors\":\"Evin Gultepe, Raghnya Valluru, Nik Bear Brown, Srinivas Sridhar\",\"doi\":\"10.1016/j.nantod.2025.102898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanotechnology has transformed healthcare, leading to the clinical adoption of numerous nanomedical products. To evaluate their clinical translation, we analyzed all trials registered on ClinicalTrials.gov using a novel nanomedicine lexicon developed through expert curation and generative AI. This approach identified 4114 nanomedical clinical trials (out of more than 500,000) forming the Nanomedical Clinical Trials (NanoCT) dataset. Our analysis reveals a 38 % rise in nanomedical trials in recent years. While oncology remains dominant (30 %), emerging applications—particularly in infectious diseases, driven by the rise of mRNA vaccines—demonstrate the field’s expanding therapeutic scope. This diversification is further evidenced by the growing use of micelles, polymeric, and metallic nanoparticles, marking a shift from the dominance of liposomal formulations. Despite significant advancements, nanomedical trials account for only 0.8 % of all registered clinical trials, highlighting key translational challenges such as regulatory complexities, high production costs, and clinical design limitations. Addressing these barriers requires the establishment of a universally accepted nanomedical lexicon to enhance data harmonization, streamline regulatory pathways, and improve interdisciplinary communication. This comprehensive analysis provides critical insights into the trajectory of nanohealth, identifies obstacles to clinical translation, and outlines strategies to maximize its future impact in medicine.</div></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"66 \",\"pages\":\"Article 102898\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013225002701\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225002701","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanotechnology has transformed healthcare, leading to the clinical adoption of numerous nanomedical products. To evaluate their clinical translation, we analyzed all trials registered on ClinicalTrials.gov using a novel nanomedicine lexicon developed through expert curation and generative AI. This approach identified 4114 nanomedical clinical trials (out of more than 500,000) forming the Nanomedical Clinical Trials (NanoCT) dataset. Our analysis reveals a 38 % rise in nanomedical trials in recent years. While oncology remains dominant (30 %), emerging applications—particularly in infectious diseases, driven by the rise of mRNA vaccines—demonstrate the field’s expanding therapeutic scope. This diversification is further evidenced by the growing use of micelles, polymeric, and metallic nanoparticles, marking a shift from the dominance of liposomal formulations. Despite significant advancements, nanomedical trials account for only 0.8 % of all registered clinical trials, highlighting key translational challenges such as regulatory complexities, high production costs, and clinical design limitations. Addressing these barriers requires the establishment of a universally accepted nanomedical lexicon to enhance data harmonization, streamline regulatory pathways, and improve interdisciplinary communication. This comprehensive analysis provides critical insights into the trajectory of nanohealth, identifies obstacles to clinical translation, and outlines strategies to maximize its future impact in medicine.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.