{"title":"链图拉普拉斯特征值的交错性质","authors":"Milica Anđelić , Zoran Stanić , Fernando C. Tura","doi":"10.1016/j.dam.2025.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Chain graphs are <span><math><mrow><mo>{</mo><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>}</mo></mrow></math></span>-free graphs. The Laplacian spectrum of a chain graph of order <span><math><mi>n</mi></math></span> consists of <span><math><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>h</mi></mrow></math></span> integer eigenvalues and <span><math><mrow><mn>2</mn><mi>h</mi></mrow></math></span> possibly non-integer eigenvalues that correspond to the associated quotient matrix of order <span><math><mrow><mn>2</mn><mi>h</mi></mrow></math></span>. We show that <span><math><mrow><mn>2</mn><mi>h</mi></mrow></math></span> complementary eigenvalues interlace vertex degrees. As an application, we confirm that the Brouwer’s conjecture holds for chain graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 80-88"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interlacing properties of Laplacian eigenvalues of chain graphs\",\"authors\":\"Milica Anđelić , Zoran Stanić , Fernando C. Tura\",\"doi\":\"10.1016/j.dam.2025.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chain graphs are <span><math><mrow><mo>{</mo><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>}</mo></mrow></math></span>-free graphs. The Laplacian spectrum of a chain graph of order <span><math><mi>n</mi></math></span> consists of <span><math><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>h</mi></mrow></math></span> integer eigenvalues and <span><math><mrow><mn>2</mn><mi>h</mi></mrow></math></span> possibly non-integer eigenvalues that correspond to the associated quotient matrix of order <span><math><mrow><mn>2</mn><mi>h</mi></mrow></math></span>. We show that <span><math><mrow><mn>2</mn><mi>h</mi></mrow></math></span> complementary eigenvalues interlace vertex degrees. As an application, we confirm that the Brouwer’s conjecture holds for chain graphs.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"380 \",\"pages\":\"Pages 80-88\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005323\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005323","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Interlacing properties of Laplacian eigenvalues of chain graphs
Chain graphs are -free graphs. The Laplacian spectrum of a chain graph of order consists of integer eigenvalues and possibly non-integer eigenvalues that correspond to the associated quotient matrix of order . We show that complementary eigenvalues interlace vertex degrees. As an application, we confirm that the Brouwer’s conjecture holds for chain graphs.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.