HandDiff:手姿预测的时空扩散模型

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jinguang Tong , Kaihao Zhang
{"title":"HandDiff:手姿预测的时空扩散模型","authors":"Jinguang Tong ,&nbsp;Kaihao Zhang","doi":"10.1016/j.inffus.2025.103647","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel problem of forecasting future 3D hand pose from a short past sequence. The primary challenge in this task is accurately modeling the stochastic nature of future hand movements. To address this, we propose a diffusion-based hand pose forecasting model designed to generate accurate future hand poses by leveraging spatial–temporal information. Our model incorporates a Spatial–Temporal Attention Module (STAM) to capture correlations between hand joints and time points, and a Coarse Forecasting Module (CFM) to extract limited explicit guidance from the temporal dimension. These features condition the diffusion model to forecast plausible future hand poses. Due to the lack of suitable datasets, we also construct two large-scale datasets based on the existing hand-object interaction (HOI) datasets HO-3D and HOI4D for benchmarking hand pose forecasting, covering both third-person and egocentric perspectives. Experimental results show that our method HandDiff significantly outperforms other state-of-the-art (SOTA) methods by 16.7% on the HO-3D dataset and 11.1% on the HOI4D dataset in terms of the mean per joint position error (MPJPE), respectively.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103647"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HandDiff: Spatial–temporal diffusion model for hand pose forecasting\",\"authors\":\"Jinguang Tong ,&nbsp;Kaihao Zhang\",\"doi\":\"10.1016/j.inffus.2025.103647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel problem of forecasting future 3D hand pose from a short past sequence. The primary challenge in this task is accurately modeling the stochastic nature of future hand movements. To address this, we propose a diffusion-based hand pose forecasting model designed to generate accurate future hand poses by leveraging spatial–temporal information. Our model incorporates a Spatial–Temporal Attention Module (STAM) to capture correlations between hand joints and time points, and a Coarse Forecasting Module (CFM) to extract limited explicit guidance from the temporal dimension. These features condition the diffusion model to forecast plausible future hand poses. Due to the lack of suitable datasets, we also construct two large-scale datasets based on the existing hand-object interaction (HOI) datasets HO-3D and HOI4D for benchmarking hand pose forecasting, covering both third-person and egocentric perspectives. Experimental results show that our method HandDiff significantly outperforms other state-of-the-art (SOTA) methods by 16.7% on the HO-3D dataset and 11.1% on the HOI4D dataset in terms of the mean per joint position error (MPJPE), respectively.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"127 \",\"pages\":\"Article 103647\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253525007195\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525007195","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新的问题,从一个短的过去序列预测未来的3D手的姿势。这项任务的主要挑战是准确地模拟未来手部运动的随机性。为了解决这个问题,我们提出了一个基于扩散的手姿预测模型,该模型旨在利用时空信息生成准确的未来手姿。我们的模型结合了一个时空注意模块(STAM)来捕捉手关节和时间点之间的相关性,以及一个粗糙预测模块(CFM)来从时间维度提取有限的明确指导。这些特征使扩散模型能够预测未来可能的手部姿势。由于缺乏合适的数据集,我们还基于现有的手-物交互(HOI)数据集HO-3D和HOI4D构建了两个大型数据集用于手部姿势预测,涵盖第三人称和自我中心视角。实验结果表明,我们的方法HandDiff在HO-3D数据集和HOI4D数据集上的平均关节位置误差(MPJPE)分别显著优于其他最先进的(SOTA)方法16.7%和11.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HandDiff: Spatial–temporal diffusion model for hand pose forecasting
We propose a novel problem of forecasting future 3D hand pose from a short past sequence. The primary challenge in this task is accurately modeling the stochastic nature of future hand movements. To address this, we propose a diffusion-based hand pose forecasting model designed to generate accurate future hand poses by leveraging spatial–temporal information. Our model incorporates a Spatial–Temporal Attention Module (STAM) to capture correlations between hand joints and time points, and a Coarse Forecasting Module (CFM) to extract limited explicit guidance from the temporal dimension. These features condition the diffusion model to forecast plausible future hand poses. Due to the lack of suitable datasets, we also construct two large-scale datasets based on the existing hand-object interaction (HOI) datasets HO-3D and HOI4D for benchmarking hand pose forecasting, covering both third-person and egocentric perspectives. Experimental results show that our method HandDiff significantly outperforms other state-of-the-art (SOTA) methods by 16.7% on the HO-3D dataset and 11.1% on the HOI4D dataset in terms of the mean per joint position error (MPJPE), respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信