页岩i型断裂韧性试验中试样结构及层理面效应研究进展

IF 5.3 2区 工程技术 Q1 MECHANICS
Yu Suo , Xianhang Wei , Wei Cao , ZheJun Pan , Bing Hou , Bin Huang , Yuwei Li
{"title":"页岩i型断裂韧性试验中试样结构及层理面效应研究进展","authors":"Yu Suo ,&nbsp;Xianhang Wei ,&nbsp;Wei Cao ,&nbsp;ZheJun Pan ,&nbsp;Bing Hou ,&nbsp;Bin Huang ,&nbsp;Yuwei Li","doi":"10.1016/j.engfracmech.2025.111532","DOIUrl":null,"url":null,"abstract":"<div><div>Fracture toughness (<span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span>) is a critical mechanical parameter for evaluating rock resistance to cracking and holds significant theoretical value for shale gas reservoir fracturing design and engineering stability assessment. To address key challenges in Mode-I fracture toughness testing of shale, this study consolidates International Society for Rock Mechanics (ISRM) and American Society for Testing and Materials (ASTM) standards with 118 recent global research findings to review five major specimen configurations (circular beam, short rod, disc, semi-circular disc, and transverse beam), analyzing their geometric design principles, <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span> calculation frameworks, and bedding plane sensitivity characteristics. Research demonstrates: Chevron-Notched Circular Beams (CB) reduce pre-cracking errors but underestimate load by 18–22%; Straight-Notched Beams (SNB) show 30% <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span> variation at &gt; 45° bedding angles. Short Rods (SR) exhibit 25% scatter at 30°. Disc specimens reveal: Cracked Chevron Notched Brazilian Disc (CCNBD) needs 3D stress correction; Cracked Straight Through Brazilian Disc (CSTBD) limits scatter to ≤ 8% despite &lt; 30% machining success; Hollow Center Cracked Disc (HCCD) optimizes crack paths; Hollow Double Wing Crack (HDWC) shows 60% <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span> increase at 80 MPa with 10–15% error. Semi-circular Discs demonstrate 35% deviation in Notched Semi Circular Bend (NSCB) versus ≤ 10% in Cracked Chevron Notched Semi-Circular Bend (CCNSCB). Transverse Beams show Notched Deep Beam (NDB) overestimates <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span> by 12–18%, while Chevron-Notched Deep Beam (CNDB) reduces variability by 15–20%. This research establishes fundamental theories and practical methodologies for precise fracture parameter measurement in shale fracturing, promotes the evolution of global testing standards, and facilitates the transition of rock fracture mechanics from laboratory research to field engineering implementation.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"328 ","pages":"Article 111532"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on specimen structure and bedding plane effects in mode-I fracture toughness testing of shale\",\"authors\":\"Yu Suo ,&nbsp;Xianhang Wei ,&nbsp;Wei Cao ,&nbsp;ZheJun Pan ,&nbsp;Bing Hou ,&nbsp;Bin Huang ,&nbsp;Yuwei Li\",\"doi\":\"10.1016/j.engfracmech.2025.111532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fracture toughness (<span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span>) is a critical mechanical parameter for evaluating rock resistance to cracking and holds significant theoretical value for shale gas reservoir fracturing design and engineering stability assessment. To address key challenges in Mode-I fracture toughness testing of shale, this study consolidates International Society for Rock Mechanics (ISRM) and American Society for Testing and Materials (ASTM) standards with 118 recent global research findings to review five major specimen configurations (circular beam, short rod, disc, semi-circular disc, and transverse beam), analyzing their geometric design principles, <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span> calculation frameworks, and bedding plane sensitivity characteristics. Research demonstrates: Chevron-Notched Circular Beams (CB) reduce pre-cracking errors but underestimate load by 18–22%; Straight-Notched Beams (SNB) show 30% <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span> variation at &gt; 45° bedding angles. Short Rods (SR) exhibit 25% scatter at 30°. Disc specimens reveal: Cracked Chevron Notched Brazilian Disc (CCNBD) needs 3D stress correction; Cracked Straight Through Brazilian Disc (CSTBD) limits scatter to ≤ 8% despite &lt; 30% machining success; Hollow Center Cracked Disc (HCCD) optimizes crack paths; Hollow Double Wing Crack (HDWC) shows 60% <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span> increase at 80 MPa with 10–15% error. Semi-circular Discs demonstrate 35% deviation in Notched Semi Circular Bend (NSCB) versus ≤ 10% in Cracked Chevron Notched Semi-Circular Bend (CCNSCB). Transverse Beams show Notched Deep Beam (NDB) overestimates <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span> by 12–18%, while Chevron-Notched Deep Beam (CNDB) reduces variability by 15–20%. This research establishes fundamental theories and practical methodologies for precise fracture parameter measurement in shale fracturing, promotes the evolution of global testing standards, and facilitates the transition of rock fracture mechanics from laboratory research to field engineering implementation.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"328 \",\"pages\":\"Article 111532\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794425007337\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425007337","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

断裂韧性(KIC)是评价岩石抗裂性的重要力学参数,在页岩气藏压裂设计和工程稳定性评价中具有重要的理论价值。为了解决页岩ⅰ型断裂韧性测试的关键挑战,本研究结合了国际岩石力学学会(ISRM)和美国材料测试学会(ASTM)的标准和118项最新的全球研究成果,回顾了五种主要的试样结构(圆梁、短杆、圆盘、半圆形圆盘和横梁),分析了它们的几何设计原则、KIC计算框架和层理面灵敏度特性。研究表明:楔形圆梁(CB)减少了预裂误差,但低估了18-22%的载荷;直缺口梁(SNB)在45°层理角下KIC变化30%。短棒(SR)在30°时表现出25%的散射。椎间盘标本显示:破裂的雪佛龙缺口巴西椎间盘(CCNBD)需要三维应力校正;裂纹直通式巴西圆盘(CSTBD)限制散射≤8%,尽管<; 30%的加工成功率;空心中心裂纹盘(HCCD)优化了裂纹路径;空心双翅裂纹(HDWC)在80mpa时KIC增加60%,误差在10 ~ 15%之间。半圆形圆盘在切口半圆弯(NSCB)中显示出35%的偏差,而在裂纹雪佛龙切口半圆弯(CCNSCB)中则显示出≤10%的偏差。横向波束显示,缺口深波束(NDB)高估了12-18%的KIC,而chevron - notch深波束(CNDB)降低了15-20%的可变性。本研究为页岩压裂中裂缝参数的精确测量建立了基础理论和实践方法,促进了全球测试标准的演进,促进了岩石破裂力学从实验室研究向现场工程实施的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review on specimen structure and bedding plane effects in mode-I fracture toughness testing of shale
Fracture toughness (KIC) is a critical mechanical parameter for evaluating rock resistance to cracking and holds significant theoretical value for shale gas reservoir fracturing design and engineering stability assessment. To address key challenges in Mode-I fracture toughness testing of shale, this study consolidates International Society for Rock Mechanics (ISRM) and American Society for Testing and Materials (ASTM) standards with 118 recent global research findings to review five major specimen configurations (circular beam, short rod, disc, semi-circular disc, and transverse beam), analyzing their geometric design principles, KIC calculation frameworks, and bedding plane sensitivity characteristics. Research demonstrates: Chevron-Notched Circular Beams (CB) reduce pre-cracking errors but underestimate load by 18–22%; Straight-Notched Beams (SNB) show 30% KIC variation at > 45° bedding angles. Short Rods (SR) exhibit 25% scatter at 30°. Disc specimens reveal: Cracked Chevron Notched Brazilian Disc (CCNBD) needs 3D stress correction; Cracked Straight Through Brazilian Disc (CSTBD) limits scatter to ≤ 8% despite < 30% machining success; Hollow Center Cracked Disc (HCCD) optimizes crack paths; Hollow Double Wing Crack (HDWC) shows 60% KIC increase at 80 MPa with 10–15% error. Semi-circular Discs demonstrate 35% deviation in Notched Semi Circular Bend (NSCB) versus ≤ 10% in Cracked Chevron Notched Semi-Circular Bend (CCNSCB). Transverse Beams show Notched Deep Beam (NDB) overestimates KIC by 12–18%, while Chevron-Notched Deep Beam (CNDB) reduces variability by 15–20%. This research establishes fundamental theories and practical methodologies for precise fracture parameter measurement in shale fracturing, promotes the evolution of global testing standards, and facilitates the transition of rock fracture mechanics from laboratory research to field engineering implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信