mo - 14% Re合金高温拉伸蠕变行为

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai Ma , Di Dong , Ye Gao , Mengyao Zhang , Zhuangzhi Wu , Dezhi Wang
{"title":"mo - 14% Re合金高温拉伸蠕变行为","authors":"Shuai Ma ,&nbsp;Di Dong ,&nbsp;Ye Gao ,&nbsp;Mengyao Zhang ,&nbsp;Zhuangzhi Wu ,&nbsp;Dezhi Wang","doi":"10.1016/j.msea.2025.149114","DOIUrl":null,"url":null,"abstract":"<div><div>The creep properties of Molybdenum-14 %Rhenium alloy (MR14) were systematically investigated under temperatures ranging from 900 to 1200 °C and applied stresses of 100–150 MPa. Experimental results indicate that steady-state creep rate of MR14 alloy is as low as 7.5 × 10<sup>−7</sup> at 1100 °C and 150 MPa. Compared with other high-temperature alloys under the same or similar temperature and stress conditions, this alloy demonstrates superior creep resistance. At 1100 °C, the corresponding stress exponent is 3.7, suggesting that the dominant creep mechanism is dislocation creep. At 150 MPa, the creep activation energy is 115.8 kJ/mol, which is lower than that of pure molybdenum for dislocation creep (approximately 240 kJ/mol). This characteristic can primarily be attributed to the rhenium effect, dislocation pipe diffusion, and the effective transmission of dislocations facilitated by abundant substructures. The fine grains formed through recrystallization exhibit heterogeneous distribution, effectively suppressing creep deformation and grain boundary sliding. Creep failure mainly originates from the nucleation, growth, and coalescence of creep voids.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149114"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile creep deformation behavior of Mo-14 %Re alloy at elevated temperature\",\"authors\":\"Shuai Ma ,&nbsp;Di Dong ,&nbsp;Ye Gao ,&nbsp;Mengyao Zhang ,&nbsp;Zhuangzhi Wu ,&nbsp;Dezhi Wang\",\"doi\":\"10.1016/j.msea.2025.149114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The creep properties of Molybdenum-14 %Rhenium alloy (MR14) were systematically investigated under temperatures ranging from 900 to 1200 °C and applied stresses of 100–150 MPa. Experimental results indicate that steady-state creep rate of MR14 alloy is as low as 7.5 × 10<sup>−7</sup> at 1100 °C and 150 MPa. Compared with other high-temperature alloys under the same or similar temperature and stress conditions, this alloy demonstrates superior creep resistance. At 1100 °C, the corresponding stress exponent is 3.7, suggesting that the dominant creep mechanism is dislocation creep. At 150 MPa, the creep activation energy is 115.8 kJ/mol, which is lower than that of pure molybdenum for dislocation creep (approximately 240 kJ/mol). This characteristic can primarily be attributed to the rhenium effect, dislocation pipe diffusion, and the effective transmission of dislocations facilitated by abundant substructures. The fine grains formed through recrystallization exhibit heterogeneous distribution, effectively suppressing creep deformation and grain boundary sliding. Creep failure mainly originates from the nucleation, growth, and coalescence of creep voids.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"946 \",\"pages\":\"Article 149114\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325013383\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013383","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了钼- 14%铼合金(MR14)在900 ~ 1200℃温度和100 ~ 150 MPa应力条件下的蠕变性能。实验结果表明,在1100℃、150 MPa条件下,MR14合金的稳态蠕变率为7.5 × 10−7。与其他高温合金相比,在相同或相似的温度和应力条件下,该合金具有优异的抗蠕变性能。在1100℃时,相应的应力指数为3.7,表明蠕变以位错蠕变为主。在150 MPa时,位错蠕变活化能为115.8 kJ/mol,低于纯钼的位错蠕变活化能(约240 kJ/mol)。这种特征主要归因于铼效应、位错管扩散以及丰富的子结构促进了位错的有效传递。再结晶形成的细晶粒呈非均匀分布,有效抑制了蠕变变形和晶界滑动。蠕变破坏主要源于蠕变空洞的形核、生长和聚并。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensile creep deformation behavior of Mo-14 %Re alloy at elevated temperature
The creep properties of Molybdenum-14 %Rhenium alloy (MR14) were systematically investigated under temperatures ranging from 900 to 1200 °C and applied stresses of 100–150 MPa. Experimental results indicate that steady-state creep rate of MR14 alloy is as low as 7.5 × 10−7 at 1100 °C and 150 MPa. Compared with other high-temperature alloys under the same or similar temperature and stress conditions, this alloy demonstrates superior creep resistance. At 1100 °C, the corresponding stress exponent is 3.7, suggesting that the dominant creep mechanism is dislocation creep. At 150 MPa, the creep activation energy is 115.8 kJ/mol, which is lower than that of pure molybdenum for dislocation creep (approximately 240 kJ/mol). This characteristic can primarily be attributed to the rhenium effect, dislocation pipe diffusion, and the effective transmission of dislocations facilitated by abundant substructures. The fine grains formed through recrystallization exhibit heterogeneous distribution, effectively suppressing creep deformation and grain boundary sliding. Creep failure mainly originates from the nucleation, growth, and coalescence of creep voids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信