Pedro P. Santos , Diogo S. Carvalho , Miguel Vasco , Alberto Sardinha , Pedro A. Santos , Ana Paiva , Francisco S. Melo
{"title":"基于预测观测插值的多智能体强化学习集中训练混合执行","authors":"Pedro P. Santos , Diogo S. Carvalho , Miguel Vasco , Alberto Sardinha , Pedro A. Santos , Ana Paiva , Francisco S. Melo","doi":"10.1016/j.artint.2025.104404","DOIUrl":null,"url":null,"abstract":"<div><div>We study <em>hybrid execution</em> in multi-agent reinforcement learning (MARL), a paradigm where agents aim to complete cooperative tasks with arbitrary communication levels at execution time by taking advantage of information-sharing among the agents. Under hybrid execution, the communication level can range from a setting in which no communication is allowed between agents (fully decentralized), to a setting featuring full communication (fully centralized), but the agents do not know beforehand which communication level they will encounter at execution time. We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations at execution time. We evaluate MARO on standard scenarios and extensions of previous benchmarks tailored to emphasize the impact of partial observability in MARL. Experimental results show that our method consistently outperforms relevant baselines, allowing agents to act with faulty communication while successfully exploiting shared information.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"348 ","pages":"Article 104404"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centralized training with hybrid execution in multi-agent reinforcement learning via predictive observation imputation\",\"authors\":\"Pedro P. Santos , Diogo S. Carvalho , Miguel Vasco , Alberto Sardinha , Pedro A. Santos , Ana Paiva , Francisco S. Melo\",\"doi\":\"10.1016/j.artint.2025.104404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study <em>hybrid execution</em> in multi-agent reinforcement learning (MARL), a paradigm where agents aim to complete cooperative tasks with arbitrary communication levels at execution time by taking advantage of information-sharing among the agents. Under hybrid execution, the communication level can range from a setting in which no communication is allowed between agents (fully decentralized), to a setting featuring full communication (fully centralized), but the agents do not know beforehand which communication level they will encounter at execution time. We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations at execution time. We evaluate MARO on standard scenarios and extensions of previous benchmarks tailored to emphasize the impact of partial observability in MARL. Experimental results show that our method consistently outperforms relevant baselines, allowing agents to act with faulty communication while successfully exploiting shared information.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"348 \",\"pages\":\"Article 104404\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370225001237\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001237","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Centralized training with hybrid execution in multi-agent reinforcement learning via predictive observation imputation
We study hybrid execution in multi-agent reinforcement learning (MARL), a paradigm where agents aim to complete cooperative tasks with arbitrary communication levels at execution time by taking advantage of information-sharing among the agents. Under hybrid execution, the communication level can range from a setting in which no communication is allowed between agents (fully decentralized), to a setting featuring full communication (fully centralized), but the agents do not know beforehand which communication level they will encounter at execution time. We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations at execution time. We evaluate MARO on standard scenarios and extensions of previous benchmarks tailored to emphasize the impact of partial observability in MARL. Experimental results show that our method consistently outperforms relevant baselines, allowing agents to act with faulty communication while successfully exploiting shared information.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.