无粘结剂的Co3O4片状三维泡沫镍的高效碱性电解

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Maxwell F.L. Garcia , Gelmires A. Neves , Jakeline R.D. Santos , Daniel A. Macedo , Luis C.C. Arzuza , Allan J.M. Araújo , Francisco J.A. Loureiro , Rafael A. Raimundo , Romualdo R. Menezes
{"title":"无粘结剂的Co3O4片状三维泡沫镍的高效碱性电解","authors":"Maxwell F.L. Garcia ,&nbsp;Gelmires A. Neves ,&nbsp;Jakeline R.D. Santos ,&nbsp;Daniel A. Macedo ,&nbsp;Luis C.C. Arzuza ,&nbsp;Allan J.M. Araújo ,&nbsp;Francisco J.A. Loureiro ,&nbsp;Rafael A. Raimundo ,&nbsp;Romualdo R. Menezes","doi":"10.1016/j.jpcs.2025.113203","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an eco-friendly and efficient strategy for designing electrocatalysts for water electrolysis, particularly targeting the oxygen evolution reaction (OER). The electrocatalyst was developed from ligand-free cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) nanoparticles grown directly on three-dimensional Nickel foam using a green sol-gel method followed by a closed low-temperature process and annealing. Uniquely, the synthesis used agar-agar (a natural polysaccharide from red algae) as a low-cost, biodegradable polymerizing agent. The resulting Co<sub>3</sub>O<sub>4</sub>/Ni foam electrodes showcased excellent structural integrity, with well-distributed nanoparticles forming a porous, sheet-like morphology. Compared to commercial Co<sub>3</sub>O<sub>4</sub> catalysts, the grown electrodes displayed significantly better electrochemical performance — including a lower overpotential (η<sub>30</sub> = 332 mV), a favorable Tafel slope (70 mV dec<sup>−1</sup>), and greater electrochemically active surface area (ECSA). The improved kinetics were associated with increased in-situ growth, thus increasing the active surface area, and efficient charge transfer dynamics, confirmed by impedance spectroscopy. Importantly, the electrode maintained long-term stability over 15 h of continuous operation, making it a promising, sustainable candidate for noble-metal-free alkaline water splitting. This work paves the way for future development of eco-conscious and scalable electrocatalyst technologies.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113203"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binder-free Co3O4 sheet-like morphology on 3D nickel foam for efficient alkaline water electrolysis\",\"authors\":\"Maxwell F.L. Garcia ,&nbsp;Gelmires A. Neves ,&nbsp;Jakeline R.D. Santos ,&nbsp;Daniel A. Macedo ,&nbsp;Luis C.C. Arzuza ,&nbsp;Allan J.M. Araújo ,&nbsp;Francisco J.A. Loureiro ,&nbsp;Rafael A. Raimundo ,&nbsp;Romualdo R. Menezes\",\"doi\":\"10.1016/j.jpcs.2025.113203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an eco-friendly and efficient strategy for designing electrocatalysts for water electrolysis, particularly targeting the oxygen evolution reaction (OER). The electrocatalyst was developed from ligand-free cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) nanoparticles grown directly on three-dimensional Nickel foam using a green sol-gel method followed by a closed low-temperature process and annealing. Uniquely, the synthesis used agar-agar (a natural polysaccharide from red algae) as a low-cost, biodegradable polymerizing agent. The resulting Co<sub>3</sub>O<sub>4</sub>/Ni foam electrodes showcased excellent structural integrity, with well-distributed nanoparticles forming a porous, sheet-like morphology. Compared to commercial Co<sub>3</sub>O<sub>4</sub> catalysts, the grown electrodes displayed significantly better electrochemical performance — including a lower overpotential (η<sub>30</sub> = 332 mV), a favorable Tafel slope (70 mV dec<sup>−1</sup>), and greater electrochemically active surface area (ECSA). The improved kinetics were associated with increased in-situ growth, thus increasing the active surface area, and efficient charge transfer dynamics, confirmed by impedance spectroscopy. Importantly, the electrode maintained long-term stability over 15 h of continuous operation, making it a promising, sustainable candidate for noble-metal-free alkaline water splitting. This work paves the way for future development of eco-conscious and scalable electrocatalyst technologies.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 113203\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725006560\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725006560","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种环保高效的水电解电催化剂设计策略,特别是针对析氧反应(OER)。采用绿色溶胶-凝胶法将无配体氧化钴(Co3O4)纳米颗粒直接生长在三维泡沫镍上,经过封闭的低温工艺和退火制备了电催化剂。独特的是,该合成使用琼脂(一种来自红藻的天然多糖)作为低成本,可生物降解的聚合剂。所得的Co3O4/Ni泡沫电极具有优异的结构完整性,纳米颗粒分布均匀,形成多孔片状结构。与商用Co3O4催化剂相比,生长电极具有更低的过电位(η30 = 332 mV)、良好的Tafel斜率(70 mV dec−1)和更大的电化学活性表面积(ECSA)。动力学的改善与原位生长的增加有关,从而增加了活性表面积,并通过阻抗谱证实了有效的电荷转移动力学。重要的是,该电极在15小时的连续运行中保持了长期稳定性,使其成为无贵金属碱水分解的有前途的可持续候选材料。这项工作为未来发展具有生态意识和可扩展的电催化剂技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binder-free Co3O4 sheet-like morphology on 3D nickel foam for efficient alkaline water electrolysis
This study presents an eco-friendly and efficient strategy for designing electrocatalysts for water electrolysis, particularly targeting the oxygen evolution reaction (OER). The electrocatalyst was developed from ligand-free cobalt oxide (Co3O4) nanoparticles grown directly on three-dimensional Nickel foam using a green sol-gel method followed by a closed low-temperature process and annealing. Uniquely, the synthesis used agar-agar (a natural polysaccharide from red algae) as a low-cost, biodegradable polymerizing agent. The resulting Co3O4/Ni foam electrodes showcased excellent structural integrity, with well-distributed nanoparticles forming a porous, sheet-like morphology. Compared to commercial Co3O4 catalysts, the grown electrodes displayed significantly better electrochemical performance — including a lower overpotential (η30 = 332 mV), a favorable Tafel slope (70 mV dec−1), and greater electrochemically active surface area (ECSA). The improved kinetics were associated with increased in-situ growth, thus increasing the active surface area, and efficient charge transfer dynamics, confirmed by impedance spectroscopy. Importantly, the electrode maintained long-term stability over 15 h of continuous operation, making it a promising, sustainable candidate for noble-metal-free alkaline water splitting. This work paves the way for future development of eco-conscious and scalable electrocatalyst technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信