Bowen Zheng , Zhichao Deng , Zhenhao Luo , Shuoyuan Mao , Minggao Ouyang , Xuebing Han , Hewu Wang , Yalun Li , Yukun Sun , Depeng Wang , Yuebo Yuan , Liangxi He , Zhi Yang , Yanlin Zhu
{"title":"全面回顾了锂离子电池建模研究与展望:深入分析了目前的研究现状和未来的发展方向","authors":"Bowen Zheng , Zhichao Deng , Zhenhao Luo , Shuoyuan Mao , Minggao Ouyang , Xuebing Han , Hewu Wang , Yalun Li , Yukun Sun , Depeng Wang , Yuebo Yuan , Liangxi He , Zhi Yang , Yanlin Zhu","doi":"10.1016/j.apenergy.2025.126688","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of global energy transition and low-carbon technologies, lithium-ion battery, as the core energy storage unit, is highly dependent on accurate battery modelling for its performance enhancement and safety management. Battery modelling has gone through a development process from mechanism-driven to data-driven, and from single-scale to multi-scale fusion, forming three main technology systems: Firstly, the equivalent circuit model (ECM), based on the Thevenin framework, uses RC networks to fit battery external characteristics. With hysteresis module embedding and genetic algorithm optimization, it enables millisecond-level responses in BMS real-time control, showing engineering application advantages. However, its modelling logic is limited to port characteristics, lacking deep physical mechanism explanation. Secondly, the physical field model, based on porous electrode theory and partial differential equations, accurately describes lithium-ion transport and electrochemical kinetics, supporting new battery material research and development. Yet, its high computational complexity hinders fast calculation despite mechanistic precision. Lastly, data-driven models leverage data-driven approaches for strong generalization in nonlinear tasks like SOC/RUL prediction. Hybrid architectures improve cross-scenario accuracy via multimodal fusion but suffer from weak interpretability and poor small-sample adaptability. This paper systematically compares the modelling principles, computational costs, prediction accuracies, and typical applications of these three types of models, and analyses the engineering adaptation advantages of the equivalent circuit model, the mechanistic depth of the physical field model, and the data-driven potential of the black box model. Meanwhile, this paper also points out the common challenges faced by traditional models in terms of novel battery system adaptability, multi-field coupling modelling complexity, and deployment of edge computing devices. The research outlook will focus on multi-scale hybrid modelling and data-driven fusion, combined with current large model applications, to provide theoretical support and technical paths for battery R&D, system design and full life cycle management.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"401 ","pages":"Article 126688"},"PeriodicalIF":11.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of lithium-ion battery modelling research and prospects: in-depth analysis of current research and future directions\",\"authors\":\"Bowen Zheng , Zhichao Deng , Zhenhao Luo , Shuoyuan Mao , Minggao Ouyang , Xuebing Han , Hewu Wang , Yalun Li , Yukun Sun , Depeng Wang , Yuebo Yuan , Liangxi He , Zhi Yang , Yanlin Zhu\",\"doi\":\"10.1016/j.apenergy.2025.126688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid development of global energy transition and low-carbon technologies, lithium-ion battery, as the core energy storage unit, is highly dependent on accurate battery modelling for its performance enhancement and safety management. Battery modelling has gone through a development process from mechanism-driven to data-driven, and from single-scale to multi-scale fusion, forming three main technology systems: Firstly, the equivalent circuit model (ECM), based on the Thevenin framework, uses RC networks to fit battery external characteristics. With hysteresis module embedding and genetic algorithm optimization, it enables millisecond-level responses in BMS real-time control, showing engineering application advantages. However, its modelling logic is limited to port characteristics, lacking deep physical mechanism explanation. Secondly, the physical field model, based on porous electrode theory and partial differential equations, accurately describes lithium-ion transport and electrochemical kinetics, supporting new battery material research and development. Yet, its high computational complexity hinders fast calculation despite mechanistic precision. Lastly, data-driven models leverage data-driven approaches for strong generalization in nonlinear tasks like SOC/RUL prediction. Hybrid architectures improve cross-scenario accuracy via multimodal fusion but suffer from weak interpretability and poor small-sample adaptability. This paper systematically compares the modelling principles, computational costs, prediction accuracies, and typical applications of these three types of models, and analyses the engineering adaptation advantages of the equivalent circuit model, the mechanistic depth of the physical field model, and the data-driven potential of the black box model. Meanwhile, this paper also points out the common challenges faced by traditional models in terms of novel battery system adaptability, multi-field coupling modelling complexity, and deployment of edge computing devices. The research outlook will focus on multi-scale hybrid modelling and data-driven fusion, combined with current large model applications, to provide theoretical support and technical paths for battery R&D, system design and full life cycle management.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"401 \",\"pages\":\"Article 126688\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925014187\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925014187","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A comprehensive review of lithium-ion battery modelling research and prospects: in-depth analysis of current research and future directions
With the rapid development of global energy transition and low-carbon technologies, lithium-ion battery, as the core energy storage unit, is highly dependent on accurate battery modelling for its performance enhancement and safety management. Battery modelling has gone through a development process from mechanism-driven to data-driven, and from single-scale to multi-scale fusion, forming three main technology systems: Firstly, the equivalent circuit model (ECM), based on the Thevenin framework, uses RC networks to fit battery external characteristics. With hysteresis module embedding and genetic algorithm optimization, it enables millisecond-level responses in BMS real-time control, showing engineering application advantages. However, its modelling logic is limited to port characteristics, lacking deep physical mechanism explanation. Secondly, the physical field model, based on porous electrode theory and partial differential equations, accurately describes lithium-ion transport and electrochemical kinetics, supporting new battery material research and development. Yet, its high computational complexity hinders fast calculation despite mechanistic precision. Lastly, data-driven models leverage data-driven approaches for strong generalization in nonlinear tasks like SOC/RUL prediction. Hybrid architectures improve cross-scenario accuracy via multimodal fusion but suffer from weak interpretability and poor small-sample adaptability. This paper systematically compares the modelling principles, computational costs, prediction accuracies, and typical applications of these three types of models, and analyses the engineering adaptation advantages of the equivalent circuit model, the mechanistic depth of the physical field model, and the data-driven potential of the black box model. Meanwhile, this paper also points out the common challenges faced by traditional models in terms of novel battery system adaptability, multi-field coupling modelling complexity, and deployment of edge computing devices. The research outlook will focus on multi-scale hybrid modelling and data-driven fusion, combined with current large model applications, to provide theoretical support and technical paths for battery R&D, system design and full life cycle management.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.