银纳米立方表面增强拉曼散射平台对泡菜中白色菌落形成酵母菌的预测定量和分类建模

IF 6.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Seong Youl Lee, Hyeyeon Song, Ji-Hyoung Ha
{"title":"银纳米立方表面增强拉曼散射平台对泡菜中白色菌落形成酵母菌的预测定量和分类建模","authors":"Seong Youl Lee,&nbsp;Hyeyeon Song,&nbsp;Ji-Hyoung Ha","doi":"10.1016/j.ifset.2025.104231","DOIUrl":null,"url":null,"abstract":"<div><div>White colony-forming yeasts (WCFYs), including <em>Candida sake</em> and <em>Kazachstania servazzii</em>, frequently appear during kimchi fermentation, yet rapid and accurate detection methods remain limited. In this study, we developed a highly sensitive surface-enhanced Raman scattering (SERS) platform by immobilizing silver nanocubes (AgNCs) onto a Si wafer using a 3-aminopropyltriethoxysilane (APTES)-mediated method. The resulting AgNC_Si SERS substrate exhibited dense nanocube packing (average edge length: 107 nm; interparticle gap: 4.7 nm), as confirmed via scanning electron microscopy and energy-dispersive X-ray spectroscopy. Finite-difference time-domain simulations revealed intense electric-field enhancement at cube edges and junctions. The SERS signals of WCFYs exhibited linear increases in the intensities of peaks at 1562 and 2876 cm<sup>−1</sup> with increasing yeast concentrations, achieving limits of detection as low as 1.00–1.02 CFU/mL. In spiked kimchi samples, <em>K. servazzii</em> was quantitatively predicted with recovery rates of 94.48 %–101.72 % using the 2876-cm<sup>−1</sup> peak. Furthermore, a principal component analysis (PCA) and linear discriminant analysis (LDA) classification model achieved 90 % accuracy, effectively discriminating <em>C. sake</em>, <em>K. servazzii</em>, and the kimchi matrix. These findings demonstrated the potential of the AgNC_Si SERS platform for rapid, onsite detection and monitoring of WCFYs in complex fermented-food systems.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"105 ","pages":"Article 104231"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silver nanocube-enabled surface-enhanced Raman scattering platform for predictive quantification and classification modeling of white colony-forming yeasts in kimchi\",\"authors\":\"Seong Youl Lee,&nbsp;Hyeyeon Song,&nbsp;Ji-Hyoung Ha\",\"doi\":\"10.1016/j.ifset.2025.104231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>White colony-forming yeasts (WCFYs), including <em>Candida sake</em> and <em>Kazachstania servazzii</em>, frequently appear during kimchi fermentation, yet rapid and accurate detection methods remain limited. In this study, we developed a highly sensitive surface-enhanced Raman scattering (SERS) platform by immobilizing silver nanocubes (AgNCs) onto a Si wafer using a 3-aminopropyltriethoxysilane (APTES)-mediated method. The resulting AgNC_Si SERS substrate exhibited dense nanocube packing (average edge length: 107 nm; interparticle gap: 4.7 nm), as confirmed via scanning electron microscopy and energy-dispersive X-ray spectroscopy. Finite-difference time-domain simulations revealed intense electric-field enhancement at cube edges and junctions. The SERS signals of WCFYs exhibited linear increases in the intensities of peaks at 1562 and 2876 cm<sup>−1</sup> with increasing yeast concentrations, achieving limits of detection as low as 1.00–1.02 CFU/mL. In spiked kimchi samples, <em>K. servazzii</em> was quantitatively predicted with recovery rates of 94.48 %–101.72 % using the 2876-cm<sup>−1</sup> peak. Furthermore, a principal component analysis (PCA) and linear discriminant analysis (LDA) classification model achieved 90 % accuracy, effectively discriminating <em>C. sake</em>, <em>K. servazzii</em>, and the kimchi matrix. These findings demonstrated the potential of the AgNC_Si SERS platform for rapid, onsite detection and monitoring of WCFYs in complex fermented-food systems.</div></div>\",\"PeriodicalId\":329,\"journal\":{\"name\":\"Innovative Food Science & Emerging Technologies\",\"volume\":\"105 \",\"pages\":\"Article 104231\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovative Food Science & Emerging Technologies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1466856425003157\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856425003157","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

白色菌落形成酵母(WCFYs),包括念珠菌清酒(Candida sake)和Kazachstania servazzii,在泡菜发酵过程中经常出现,但快速准确的检测方法仍然有限。在这项研究中,我们利用3-氨基丙基三乙氧基硅烷(APTES)介导的方法将银纳米立方体(agnc)固定在硅片上,开发了一个高灵敏度的表面增强拉曼散射(SERS)平台。通过扫描电镜和能量色散x射线能谱分析证实,所得AgNC_Si SERS衬底具有致密的纳米立方堆积(平均边长为107 nm,粒子间间隙为4.7 nm)。时域有限差分模拟显示在立方体边缘和结处有强烈的电场增强。随着酵母浓度的增加,WCFYs在1562和2876 cm−1处的SERS信号强度呈线性增加,检测限低至1.00-1.02 CFU/mL。在添加的泡菜样品中,利用2876-cm−1峰对K. servazzii进行了定量预测,回收率为94.48% ~ 101.72%。此外,主成分分析(PCA)和线性判别分析(LDA)分类模型的准确率达到90%,可以有效地区分清酒、K. servazzii和泡菜矩阵。这些发现证明了AgNC_Si SERS平台在复杂发酵食品系统中快速、现场检测和监测WCFYs的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silver nanocube-enabled surface-enhanced Raman scattering platform for predictive quantification and classification modeling of white colony-forming yeasts in kimchi
White colony-forming yeasts (WCFYs), including Candida sake and Kazachstania servazzii, frequently appear during kimchi fermentation, yet rapid and accurate detection methods remain limited. In this study, we developed a highly sensitive surface-enhanced Raman scattering (SERS) platform by immobilizing silver nanocubes (AgNCs) onto a Si wafer using a 3-aminopropyltriethoxysilane (APTES)-mediated method. The resulting AgNC_Si SERS substrate exhibited dense nanocube packing (average edge length: 107 nm; interparticle gap: 4.7 nm), as confirmed via scanning electron microscopy and energy-dispersive X-ray spectroscopy. Finite-difference time-domain simulations revealed intense electric-field enhancement at cube edges and junctions. The SERS signals of WCFYs exhibited linear increases in the intensities of peaks at 1562 and 2876 cm−1 with increasing yeast concentrations, achieving limits of detection as low as 1.00–1.02 CFU/mL. In spiked kimchi samples, K. servazzii was quantitatively predicted with recovery rates of 94.48 %–101.72 % using the 2876-cm−1 peak. Furthermore, a principal component analysis (PCA) and linear discriminant analysis (LDA) classification model achieved 90 % accuracy, effectively discriminating C. sake, K. servazzii, and the kimchi matrix. These findings demonstrated the potential of the AgNC_Si SERS platform for rapid, onsite detection and monitoring of WCFYs in complex fermented-food systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
6.10%
发文量
259
审稿时长
25 days
期刊介绍: Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信