基于LLM的游戏化XR自适应反馈机制学习框架

Anna Maria Gianni, Nikolaos Nikolakis, Nikolaos Antoniadis
{"title":"基于LLM的游戏化XR自适应反馈机制学习框架","authors":"Anna Maria Gianni,&nbsp;Nikolaos Nikolakis,&nbsp;Nikolaos Antoniadis","doi":"10.1016/j.cexr.2025.100116","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid technological advancements present challenges in computer science education, as traditional instructional approaches often fail to maintain learner engagement or adapt effectively to diverse learning needs. To address these limitations, this study proposes an innovative adaptive learning framework integrating real-time feedback from large language models (LLMs), personalized learning via model-agnostic meta-learning (MAML), and game-theoretic incentives in an immersive XR environment. Learners are modeled as strategic agents whose individual and collaborative behaviors dynamically align with course objectives. Preliminary evaluation in a real-world computer science course demonstrated a 22 % increase in student-reported motivation and over 40 % fewer task retries compared to a traditional digital baseline. These early findings highlight the framework's practical potential to significantly enhance engagement, personalization, and effectiveness in technical education.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"7 ","pages":"Article 100116"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An LLM based learning framework for adaptive feedback mechanisms in gamified XR\",\"authors\":\"Anna Maria Gianni,&nbsp;Nikolaos Nikolakis,&nbsp;Nikolaos Antoniadis\",\"doi\":\"10.1016/j.cexr.2025.100116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rapid technological advancements present challenges in computer science education, as traditional instructional approaches often fail to maintain learner engagement or adapt effectively to diverse learning needs. To address these limitations, this study proposes an innovative adaptive learning framework integrating real-time feedback from large language models (LLMs), personalized learning via model-agnostic meta-learning (MAML), and game-theoretic incentives in an immersive XR environment. Learners are modeled as strategic agents whose individual and collaborative behaviors dynamically align with course objectives. Preliminary evaluation in a real-world computer science course demonstrated a 22 % increase in student-reported motivation and over 40 % fewer task retries compared to a traditional digital baseline. These early findings highlight the framework's practical potential to significantly enhance engagement, personalization, and effectiveness in technical education.</div></div>\",\"PeriodicalId\":100320,\"journal\":{\"name\":\"Computers & Education: X Reality\",\"volume\":\"7 \",\"pages\":\"Article 100116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Education: X Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949678025000248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Education: X Reality","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949678025000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速的技术进步给计算机科学教育带来了挑战,因为传统的教学方法往往不能保持学习者的参与或有效地适应不同的学习需求。为了解决这些限制,本研究提出了一个创新的自适应学习框架,该框架集成了来自大型语言模型(llm)的实时反馈、通过模型不可知元学习(MAML)进行的个性化学习以及沉浸式XR环境中的博弈论激励。学习者被建模为战略代理,其个人和协作行为与课程目标动态一致。在真实的计算机科学课程中进行的初步评估表明,与传统的数字基线相比,学生报告的动机增加了22%,任务重试次数减少了40%以上。这些早期发现突出了该框架在显著提高技术教育的参与度、个性化和有效性方面的实际潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An LLM based learning framework for adaptive feedback mechanisms in gamified XR
Rapid technological advancements present challenges in computer science education, as traditional instructional approaches often fail to maintain learner engagement or adapt effectively to diverse learning needs. To address these limitations, this study proposes an innovative adaptive learning framework integrating real-time feedback from large language models (LLMs), personalized learning via model-agnostic meta-learning (MAML), and game-theoretic incentives in an immersive XR environment. Learners are modeled as strategic agents whose individual and collaborative behaviors dynamically align with course objectives. Preliminary evaluation in a real-world computer science course demonstrated a 22 % increase in student-reported motivation and over 40 % fewer task retries compared to a traditional digital baseline. These early findings highlight the framework's practical potential to significantly enhance engagement, personalization, and effectiveness in technical education.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信