基于CNN反演和CFAR检测的天线阵诊断方法

IF 5.8 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Valentina Schenone;Alessandro Fedeli;Andrea Randazzo
{"title":"基于CNN反演和CFAR检测的天线阵诊断方法","authors":"Valentina Schenone;Alessandro Fedeli;Andrea Randazzo","doi":"10.1109/TAP.2025.3573617","DOIUrl":null,"url":null,"abstract":"In this article, a novel approach for the diagnosis of planar antenna arrays is presented. The developed method is based on the use of a U-Net convolutional neural network (CNN) for reconstructing the surface electric-field distribution over the array aperture starting from measurements of the radiated field collected in the far-field region. The obtained distributions are subsequently postprocessed through a constant false alarm rate (CFAR) approach to identify the possibly faulty elements. The proposed technique has been validated using numerically simulated data concerning realistic patch arrays, showing good detection capabilities.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 9","pages":"6252-6262"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Antenna Array Diagnosis Approach Based on CNN Inversion and CFAR Detection\",\"authors\":\"Valentina Schenone;Alessandro Fedeli;Andrea Randazzo\",\"doi\":\"10.1109/TAP.2025.3573617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a novel approach for the diagnosis of planar antenna arrays is presented. The developed method is based on the use of a U-Net convolutional neural network (CNN) for reconstructing the surface electric-field distribution over the array aperture starting from measurements of the radiated field collected in the far-field region. The obtained distributions are subsequently postprocessed through a constant false alarm rate (CFAR) approach to identify the possibly faulty elements. The proposed technique has been validated using numerically simulated data concerning realistic patch arrays, showing good detection capabilities.\",\"PeriodicalId\":13102,\"journal\":{\"name\":\"IEEE Transactions on Antennas and Propagation\",\"volume\":\"73 9\",\"pages\":\"6252-6262\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11021323/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11021323/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的平面天线阵诊断方法。该方法基于U-Net卷积神经网络(CNN),从远场区域收集的辐射场测量数据开始,重建阵列孔径上的表面电场分布。获得的分布随后通过恒定虚警率(CFAR)方法进行后处理,以识别可能的故障元素。该技术已通过实际贴片阵列的数值模拟数据进行了验证,显示出良好的检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Antenna Array Diagnosis Approach Based on CNN Inversion and CFAR Detection
In this article, a novel approach for the diagnosis of planar antenna arrays is presented. The developed method is based on the use of a U-Net convolutional neural network (CNN) for reconstructing the surface electric-field distribution over the array aperture starting from measurements of the radiated field collected in the far-field region. The obtained distributions are subsequently postprocessed through a constant false alarm rate (CFAR) approach to identify the possibly faulty elements. The proposed technique has been validated using numerically simulated data concerning realistic patch arrays, showing good detection capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信