金属-绝缘体-金属等离子体纳米结构中生物传感应用的可达传感位点

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zohreh Ayareh, , , Mehrdad Moradi, , , Morteza Shafiei, , and , Duncan S. Sutherland*, 
{"title":"金属-绝缘体-金属等离子体纳米结构中生物传感应用的可达传感位点","authors":"Zohreh Ayareh,&nbsp;, ,&nbsp;Mehrdad Moradi,&nbsp;, ,&nbsp;Morteza Shafiei,&nbsp;, and ,&nbsp;Duncan S. Sutherland*,&nbsp;","doi":"10.1021/acsami.5c10116","DOIUrl":null,"url":null,"abstract":"<p >Localized surface plasmon resonance (LSPR) biosensing has emerged as a powerful technique for highly sensitive biomolecular detection. Metal–insulator–metal (MIM) nanostructures, featuring a plasmonic metal and a vertical gap, offer the potential for high sensitivity to background refractive index sensor measurements by generating strong near-field hotspots in the gaps. While they provide robust control of gap size, a challenge remains both to make the gaps accessible and to direct the binding of analyte to the gaps. We designed Au–SiO<sub>2</sub>–Au MIM nanostructures with accessible gaps (aMIM) through FDTD simulation optimization and demonstrated fabrication and refractive index sensitivity experimentally. To direct detection events to the gap regions, we developed a 3-way copatterning of protein-rejecting brush polymers at and around the nanostructure, including functional groups for protein coupling only within the gaps. We demonstrated refractive index sensing directed within the gap using streptavidin as a model analyte, but the approach can be extended to a range of analytes. Our work highlights routes for site-specific binding at high-sensitivity sites around plasmonic sensors with the potential for use in biosensing.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 38","pages":"53122–53130"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accessible Sensing Sites in Metal–Insulator–Metal Plasmonic Nanostructure for Biosensing Applications\",\"authors\":\"Zohreh Ayareh,&nbsp;, ,&nbsp;Mehrdad Moradi,&nbsp;, ,&nbsp;Morteza Shafiei,&nbsp;, and ,&nbsp;Duncan S. Sutherland*,&nbsp;\",\"doi\":\"10.1021/acsami.5c10116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Localized surface plasmon resonance (LSPR) biosensing has emerged as a powerful technique for highly sensitive biomolecular detection. Metal–insulator–metal (MIM) nanostructures, featuring a plasmonic metal and a vertical gap, offer the potential for high sensitivity to background refractive index sensor measurements by generating strong near-field hotspots in the gaps. While they provide robust control of gap size, a challenge remains both to make the gaps accessible and to direct the binding of analyte to the gaps. We designed Au–SiO<sub>2</sub>–Au MIM nanostructures with accessible gaps (aMIM) through FDTD simulation optimization and demonstrated fabrication and refractive index sensitivity experimentally. To direct detection events to the gap regions, we developed a 3-way copatterning of protein-rejecting brush polymers at and around the nanostructure, including functional groups for protein coupling only within the gaps. We demonstrated refractive index sensing directed within the gap using streptavidin as a model analyte, but the approach can be extended to a range of analytes. Our work highlights routes for site-specific binding at high-sensitivity sites around plasmonic sensors with the potential for use in biosensing.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 38\",\"pages\":\"53122–53130\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c10116\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c10116","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

局部表面等离子体共振(LSPR)生物传感技术已成为一种高灵敏度的生物分子检测技术。金属-绝缘体-金属(MIM)纳米结构具有等离子体金属和垂直间隙,通过在间隙中产生强近场热点,为背景折射率传感器测量提供了高灵敏度的潜力。虽然它们提供了对间隙大小的强大控制,但仍然存在一个挑战,即使间隙易于接近,并指导分析物与间隙的结合。通过FDTD仿真优化设计了具有可达间隙(aMIM)的Au-SiO2-Au - MIM纳米结构,并通过实验验证了其制作工艺和折射率灵敏度。为了将检测事件定向到间隙区域,我们在纳米结构上和周围开发了一种蛋白质排斥刷状聚合物的3向共模,包括仅在间隙内进行蛋白质偶联的官能团。我们使用链霉亲和素作为模型分析物,展示了直接在间隙内的折射率传感,但该方法可以扩展到一系列分析物。我们的工作强调了等离子体传感器周围高灵敏度位点特异性结合的途径,具有在生物传感中使用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accessible Sensing Sites in Metal–Insulator–Metal Plasmonic Nanostructure for Biosensing Applications

Accessible Sensing Sites in Metal–Insulator–Metal Plasmonic Nanostructure for Biosensing Applications

Accessible Sensing Sites in Metal–Insulator–Metal Plasmonic Nanostructure for Biosensing Applications

Localized surface plasmon resonance (LSPR) biosensing has emerged as a powerful technique for highly sensitive biomolecular detection. Metal–insulator–metal (MIM) nanostructures, featuring a plasmonic metal and a vertical gap, offer the potential for high sensitivity to background refractive index sensor measurements by generating strong near-field hotspots in the gaps. While they provide robust control of gap size, a challenge remains both to make the gaps accessible and to direct the binding of analyte to the gaps. We designed Au–SiO2–Au MIM nanostructures with accessible gaps (aMIM) through FDTD simulation optimization and demonstrated fabrication and refractive index sensitivity experimentally. To direct detection events to the gap regions, we developed a 3-way copatterning of protein-rejecting brush polymers at and around the nanostructure, including functional groups for protein coupling only within the gaps. We demonstrated refractive index sensing directed within the gap using streptavidin as a model analyte, but the approach can be extended to a range of analytes. Our work highlights routes for site-specific binding at high-sensitivity sites around plasmonic sensors with the potential for use in biosensing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信