Zeynep Alakus, Ensar Piskin, Fatma Budak, S. Irem Kaya, Ahmet Cetinkaya, Sibel A. Ozkan
{"title":"电化学传感器检测和实时监测非甾体抗炎药的最新进展","authors":"Zeynep Alakus, Ensar Piskin, Fatma Budak, S. Irem Kaya, Ahmet Cetinkaya, Sibel A. Ozkan","doi":"10.1016/j.electacta.2025.147392","DOIUrl":null,"url":null,"abstract":"The most commonly used medications to control fever, pain, and inflammation are non-steroidal anti-inflammatory drugs (NSAIDs). However, excessive use of them can have negative health consequences on humans, and their uncontrolled disposal in ecosystems raises serious environmental issues. Electrochemical sensors offer enormous potential for the sensitive, selective, effective, and economical detection of pharmaceuticals in complicated media, surpassing the drawbacks of conventional detection techniques. An overview of the most recent advancements in electrochemical sensors that use nanoscale materials as electrode modifiers that target NSAIDs, such as metallic nanomaterials, carbon-based materials, and hybrid materials, is provided in this review. Analysis of real samples, sensor/analyte interactions, and various electrode fabrication techniques was particularly taken into consideration. The studies in the literature were summarized in detail in terms of various analytical properties, such as linearity range, limit of detection (LOD), limit of quantification (LOQ), and detection method, among others. The experimental results were then discussed. Finally, this review discusses the potential, challenges, and opportunities in designing next-generation advanced sensing devices.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"48 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent developments in electrochemical sensors for the detection and real-time monitoring of non-steroidal anti-inflammatory drugs\",\"authors\":\"Zeynep Alakus, Ensar Piskin, Fatma Budak, S. Irem Kaya, Ahmet Cetinkaya, Sibel A. Ozkan\",\"doi\":\"10.1016/j.electacta.2025.147392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most commonly used medications to control fever, pain, and inflammation are non-steroidal anti-inflammatory drugs (NSAIDs). However, excessive use of them can have negative health consequences on humans, and their uncontrolled disposal in ecosystems raises serious environmental issues. Electrochemical sensors offer enormous potential for the sensitive, selective, effective, and economical detection of pharmaceuticals in complicated media, surpassing the drawbacks of conventional detection techniques. An overview of the most recent advancements in electrochemical sensors that use nanoscale materials as electrode modifiers that target NSAIDs, such as metallic nanomaterials, carbon-based materials, and hybrid materials, is provided in this review. Analysis of real samples, sensor/analyte interactions, and various electrode fabrication techniques was particularly taken into consideration. The studies in the literature were summarized in detail in terms of various analytical properties, such as linearity range, limit of detection (LOD), limit of quantification (LOQ), and detection method, among others. The experimental results were then discussed. Finally, this review discusses the potential, challenges, and opportunities in designing next-generation advanced sensing devices.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2025.147392\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.147392","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Recent developments in electrochemical sensors for the detection and real-time monitoring of non-steroidal anti-inflammatory drugs
The most commonly used medications to control fever, pain, and inflammation are non-steroidal anti-inflammatory drugs (NSAIDs). However, excessive use of them can have negative health consequences on humans, and their uncontrolled disposal in ecosystems raises serious environmental issues. Electrochemical sensors offer enormous potential for the sensitive, selective, effective, and economical detection of pharmaceuticals in complicated media, surpassing the drawbacks of conventional detection techniques. An overview of the most recent advancements in electrochemical sensors that use nanoscale materials as electrode modifiers that target NSAIDs, such as metallic nanomaterials, carbon-based materials, and hybrid materials, is provided in this review. Analysis of real samples, sensor/analyte interactions, and various electrode fabrication techniques was particularly taken into consideration. The studies in the literature were summarized in detail in terms of various analytical properties, such as linearity range, limit of detection (LOD), limit of quantification (LOQ), and detection method, among others. The experimental results were then discussed. Finally, this review discusses the potential, challenges, and opportunities in designing next-generation advanced sensing devices.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.