溶液处理的kesterite太阳能组件具有10.1%的认证效率

IF 60.1 1区 材料科学 Q1 ENERGY & FUELS
Chunxu Xiang, Mingjun Yuan, Chuan’an Ding, Yuanyuan Zheng, Yize Li, Xiaole Hu, Jie Zhang, Xinyu Li, Chengfeng Ma, Shaoying Wang, Weibo Yan, Chunlei Yang, Wei Huang, Hao Xin
{"title":"溶液处理的kesterite太阳能组件具有10.1%的认证效率","authors":"Chunxu Xiang, Mingjun Yuan, Chuan’an Ding, Yuanyuan Zheng, Yize Li, Xiaole Hu, Jie Zhang, Xinyu Li, Chengfeng Ma, Shaoying Wang, Weibo Yan, Chunlei Yang, Wei Huang, Hao Xin","doi":"10.1038/s41560-025-01860-3","DOIUrl":null,"url":null,"abstract":"<p>Solution processing has great advantages for emerging thin-film solar cells but remains a big challenge for multielemental inorganic films due to complicated phase evolution and grain growth during crystallization. Here we report the fabrication of uniform, large-area Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) films and solar modules from solution. By tuning the thiourea/metal ratio to increase film porosity—thereby promoting more uniform vertical reaction and lateral grain growth—we improved the uniformity of CZTSSe films and achieved a single-cell efficiency of 13.4% and a solar module efficiency of 8.91%. We further optimized the module structure to reduce non-ideal contact and patterning-induced shunt and resistive losses, resulting in a champion CZTSSe module with a National Renewable Energy Laboratory-certified efficiency of 10.1%. This module also exhibits the lowest cell-to-module loss in open circuit voltage and current density among state-of-the-art emerging thin-film solar modules. Our work demonstrates the viability of solution processing to deposit uniform, large-area CZTSSe film and efficient solar modules, advancing the development of the technology.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"7 1","pages":""},"PeriodicalIF":60.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution-processed kesterite solar module with 10.1% certified efficiency\",\"authors\":\"Chunxu Xiang, Mingjun Yuan, Chuan’an Ding, Yuanyuan Zheng, Yize Li, Xiaole Hu, Jie Zhang, Xinyu Li, Chengfeng Ma, Shaoying Wang, Weibo Yan, Chunlei Yang, Wei Huang, Hao Xin\",\"doi\":\"10.1038/s41560-025-01860-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solution processing has great advantages for emerging thin-film solar cells but remains a big challenge for multielemental inorganic films due to complicated phase evolution and grain growth during crystallization. Here we report the fabrication of uniform, large-area Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) films and solar modules from solution. By tuning the thiourea/metal ratio to increase film porosity—thereby promoting more uniform vertical reaction and lateral grain growth—we improved the uniformity of CZTSSe films and achieved a single-cell efficiency of 13.4% and a solar module efficiency of 8.91%. We further optimized the module structure to reduce non-ideal contact and patterning-induced shunt and resistive losses, resulting in a champion CZTSSe module with a National Renewable Energy Laboratory-certified efficiency of 10.1%. This module also exhibits the lowest cell-to-module loss in open circuit voltage and current density among state-of-the-art emerging thin-film solar modules. Our work demonstrates the viability of solution processing to deposit uniform, large-area CZTSSe film and efficient solar modules, advancing the development of the technology.</p>\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":60.1000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41560-025-01860-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01860-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

溶液工艺对于新兴的薄膜太阳能电池具有很大的优势,但由于结晶过程中复杂的相演化和晶粒生长,对于多元素无机薄膜来说仍然是一个很大的挑战。本文报道了用溶液制备均匀、大面积Cu2ZnSn(S,Se)4 (CZTSSe)薄膜和太阳能组件。通过调整硫脲/金属的比例来增加薄膜的孔隙度,从而促进更均匀的垂直反应和横向晶粒生长,我们提高了CZTSSe薄膜的均匀性,实现了13.4%的单电池效率和8.91%的太阳能组件效率。我们进一步优化了模块结构,以减少非理想接触和模式引起的分流和电阻损耗,从而获得了国家可再生能源实验室认证的效率为10.1%的冠军CZTSSe模块。在最先进的新兴薄膜太阳能组件中,该组件在开路电压和电流密度方面也具有最低的电池到组件损耗。我们的工作证明了溶液处理沉积均匀、大面积的CZTSSe薄膜和高效太阳能组件的可行性,推动了该技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solution-processed kesterite solar module with 10.1% certified efficiency

Solution-processed kesterite solar module with 10.1% certified efficiency

Solution processing has great advantages for emerging thin-film solar cells but remains a big challenge for multielemental inorganic films due to complicated phase evolution and grain growth during crystallization. Here we report the fabrication of uniform, large-area Cu2ZnSn(S,Se)4 (CZTSSe) films and solar modules from solution. By tuning the thiourea/metal ratio to increase film porosity—thereby promoting more uniform vertical reaction and lateral grain growth—we improved the uniformity of CZTSSe films and achieved a single-cell efficiency of 13.4% and a solar module efficiency of 8.91%. We further optimized the module structure to reduce non-ideal contact and patterning-induced shunt and resistive losses, resulting in a champion CZTSSe module with a National Renewable Energy Laboratory-certified efficiency of 10.1%. This module also exhibits the lowest cell-to-module loss in open circuit voltage and current density among state-of-the-art emerging thin-film solar modules. Our work demonstrates the viability of solution processing to deposit uniform, large-area CZTSSe film and efficient solar modules, advancing the development of the technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信