6061铝合金低温变形诱发位错行为及亚结构演化

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zhao Zihan, Yi Youping, Huang Shiquan, He Hailin, Hu Jianliang
{"title":"6061铝合金低温变形诱发位错行为及亚结构演化","authors":"Zhao Zihan, Yi Youping, Huang Shiquan, He Hailin, Hu Jianliang","doi":"10.1016/j.jallcom.2025.183781","DOIUrl":null,"url":null,"abstract":"This study systematically investigates the cryogenic deformation behavior of 6061 aluminum alloy using a multiscale approach integrating EBSD, TEM, nanoindentation, and molecular dynamics (MD) simulations. The results reveal that deformation at –196 °C suppresses dynamic recovery and dislocation entanglement, promoting dislocation slip along {111} planes and dislocation dissociation. This leads to the formation of dense, low-entanglement dislocation networks. Concurrently, a progressive increase in low-angle grain boundaries (LAGBs) and kernel average misorientation (KAM) indicates continuous lattice rotation and substructure evolution, ultimately facilitating geometry-driven dynamic recrystallization (GDRX) and the formation of lamellar-like refined grains. In contrast, room-temperature deformation is dominated by recovery, with limited lattice rotation and no significant grain refinement. Nanoindentation tests confirm enhanced hardness and greater plastic work absorption after cryogenic deformation. Atomistic simulations further demonstrate longer, straighter dislocation lines and a reduced proportion of 1/6<110> stair-rod dislocations at –196 °C, consistent with smoother, planar slip. Together, these findings establish a dislocation-to-substructure-to-microstructure hierarchy, elucidating the fundamental mechanisms responsible for cryogenic plasticity enhancement. These findings offer theoretical guidance for the design of cryogenic forming strategies aimed at enhancing precision aluminum components.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"3 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryogenic deformation-induced dislocation behavior and substructural evolution in 6061 aluminum alloy\",\"authors\":\"Zhao Zihan, Yi Youping, Huang Shiquan, He Hailin, Hu Jianliang\",\"doi\":\"10.1016/j.jallcom.2025.183781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study systematically investigates the cryogenic deformation behavior of 6061 aluminum alloy using a multiscale approach integrating EBSD, TEM, nanoindentation, and molecular dynamics (MD) simulations. The results reveal that deformation at –196 °C suppresses dynamic recovery and dislocation entanglement, promoting dislocation slip along {111} planes and dislocation dissociation. This leads to the formation of dense, low-entanglement dislocation networks. Concurrently, a progressive increase in low-angle grain boundaries (LAGBs) and kernel average misorientation (KAM) indicates continuous lattice rotation and substructure evolution, ultimately facilitating geometry-driven dynamic recrystallization (GDRX) and the formation of lamellar-like refined grains. In contrast, room-temperature deformation is dominated by recovery, with limited lattice rotation and no significant grain refinement. Nanoindentation tests confirm enhanced hardness and greater plastic work absorption after cryogenic deformation. Atomistic simulations further demonstrate longer, straighter dislocation lines and a reduced proportion of 1/6<110> stair-rod dislocations at –196 °C, consistent with smoother, planar slip. Together, these findings establish a dislocation-to-substructure-to-microstructure hierarchy, elucidating the fundamental mechanisms responsible for cryogenic plasticity enhancement. These findings offer theoretical guidance for the design of cryogenic forming strategies aimed at enhancing precision aluminum components.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.183781\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.183781","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用EBSD、TEM、纳米压痕和分子动力学(MD)模拟相结合的多尺度方法系统地研究了6061铝合金的低温变形行为。结果表明:-196 °C的变形抑制了动态恢复和位错纠缠,促进了位错沿{111}面滑移和位错解离。这导致形成密集的、低纠缠的位错网络。同时,低角晶界(LAGBs)和籽粒平均错取向(KAM)的逐渐增加表明晶格不断旋转和亚结构不断演化,最终促进了几何驱动的动态再结晶(GDRX)和片状细晶的形成。相反,室温变形以恢复为主,晶格旋转有限,晶粒细化不明显。纳米压痕试验证实了低温变形后硬度和塑性功吸收的增强。原子模拟进一步表明,在-196 °C时,位错线更长、更直,1/6<110>;阶梯位错比例降低,与平滑的平面滑移一致。总之,这些发现建立了位错-亚结构-微观结构的层次结构,阐明了负责低温塑性增强的基本机制。这些研究结果为提高铝合金零件精度的低温成形策略设计提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cryogenic deformation-induced dislocation behavior and substructural evolution in 6061 aluminum alloy

Cryogenic deformation-induced dislocation behavior and substructural evolution in 6061 aluminum alloy
This study systematically investigates the cryogenic deformation behavior of 6061 aluminum alloy using a multiscale approach integrating EBSD, TEM, nanoindentation, and molecular dynamics (MD) simulations. The results reveal that deformation at –196 °C suppresses dynamic recovery and dislocation entanglement, promoting dislocation slip along {111} planes and dislocation dissociation. This leads to the formation of dense, low-entanglement dislocation networks. Concurrently, a progressive increase in low-angle grain boundaries (LAGBs) and kernel average misorientation (KAM) indicates continuous lattice rotation and substructure evolution, ultimately facilitating geometry-driven dynamic recrystallization (GDRX) and the formation of lamellar-like refined grains. In contrast, room-temperature deformation is dominated by recovery, with limited lattice rotation and no significant grain refinement. Nanoindentation tests confirm enhanced hardness and greater plastic work absorption after cryogenic deformation. Atomistic simulations further demonstrate longer, straighter dislocation lines and a reduced proportion of 1/6<110> stair-rod dislocations at –196 °C, consistent with smoother, planar slip. Together, these findings establish a dislocation-to-substructure-to-microstructure hierarchy, elucidating the fundamental mechanisms responsible for cryogenic plasticity enhancement. These findings offer theoretical guidance for the design of cryogenic forming strategies aimed at enhancing precision aluminum components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信